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Abstract

The thesis put forth in this dissertation is that machine learning classifiers
can be used as instruments for decoding variables of interest from functional
magnetic resonance imaging (fMRI) data. There are two main goals in decod-
ing:

• Showing that the variable of interest can be predicted from the data in a
statistically reliable manner (i.e. there’s enough information present).

• Shedding light on how the data encode the information needed to predict,
taking into account what the classifier used can learn and any criteria by
which the data are filtered (e.g. how voxels and time points used are
chosen).

Chapter 2 considers the issues that arise when using traditional linear clas-
sifiers and several different voxel selection techniques to strive towards these
goals. It examines questions such as whether there is redundant, as well as dif-
ferent kinds of, information in fMRI data and how those facts complicate the
task of determining whether voxel subsets encode the desired information or
whether certain choices of selection method or classifier are universally pre-
ferrable. All the results presented were obtained through a comparative study
of five fMRI datasets.

Chapter 3 and Chapter 4 introduce the Support Vector Decomposition Ma-
chine, a new algorithm that attempts to sidestep the use of voxel selection by
learning a low dimensional representation of the data that is also suitable for
decoding variables of interest and has the potential to allow incorporation of
domain information directly, rather than through the proxy of voxel selection
criteria.
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Chapter 1

Introduction

The thesis put forth in this dissertation is that machine learning classifiers can be used as
instruments for decoding variables of interest from functional magnetic resonance imaging
(fMRI) data. There are two main goals in decoding:

• Showing that the variable of interest can be predicted from the data in a statistically
reliable manner (i.e. there’s enough information present).

• Shedding light on how the data encode the information needed to predict, taking
into account what the classifier used can learn and any criteria by which the data are
filtered (e.g. how voxels and time points used are chosen).

Chapter 2 is concerned with both of these goals when conventional classifiers are used;
Chapters 3 and 4 explore the use of a new algorithm for addressing both of them simulta-
neously, rather than training a classifier and examining it a posteriori.

Functional Magnetic Resonance Imaging

Technique and Data

Functional Magnetic Resonance Imaging (fMRI) is a technique for obtaining three-dimensional
images related to activity in the brain through time. This will necessarily be a very brief
introduction, but we direct the interested reader to [30] for a comprehensive and accessible
introduction to fMRI. More precisely, fMRI measures the ratio of oxygenated hemoglobin
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to deoxygenated hemoglobin in the blood with respect to a control baseline, at many indi-
vidual locations within the brain. Blood oxygen level is influenced by local neural activity,
and hence this blood oxygen level dependent (BOLD) response is generally taken as an
indicator of neural activity.

An fMRI scanner measures the value of the fMRI signal (BOLD response) at all the
points in a three dimensional grid, or image, covering part of the brain. In the studies used
in this dissertation, a three dimensional image is captured every second. We refer to the
cells within an image as voxels (volume elements). The voxels in a typical fMRI study
have a volume of a few tens of cubic millimeters, and a three dimensional image typically
contains tens of thousands of voxels, a large fraction of which contain cortical matter and
are thus of interest. While the spatial resolution of fMRI is good, each voxel nevertheless
contains on the order of hundreds of thousands of neurons to millions of neurons.

The temporal response of the fMRI BOLD signal is smeared over several seconds.
Given a brief stimulus such as a flashing checkerboard, for instance, the fMRI BOLD
response in the visual cortex increases to a maximum after approximately four to six sec-
onds, typically returning to baseline levels after another five to ten seconds. Despite this
prolonged temporal response, researchers have found that the relative timing of events can
be resolved to within a few tens of milliseconds (e.g. to distinguish the relative timing of
two flashes of light - one in the left eye and one in the right eye - as in [50]). The work
in this dissertation does not use information in the temporal domain except insofar as con-
secutive groups of images are averaged into single images that are used as examples for
classifiers, with each voxel being a feature. An alternative would be to use the same voxel
at different time points in a trial as features instead, as proposed in [52].

A small portion of fMRI data is illustrated in Figure 1.1. This figure shows data col-
lected over a fifteen second interval during which the subject was read a word, decided
whether it was a noun or verb (in this case, it was a verb), then waited for another word.
This data was sampled once per second for fifteen seconds, over sixteen planar slices, one
of which is shown in the figure.

Finally, note that, even though the data for different subjects might reside on grids with
the same dimensions, these are generally not directly comparable. Matching datasets from
different subjects to each other or to an (annotated) template is called spatial normalization
([16]).
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Figure 1.1: Top: fMRI data for a selected set of voxels in the cortex, from a two-
dimensional image plane through the brain. A fifteen second interval of fMRI data is
plotted at each voxel location. The anterior portion of the brain is at the top of the figure,
posterior at bottom. The left side of the brain is shown on the right, according to standard
radiological convention. The full three-dimensional brain image consists of sixteen such
image planes. Bottom: The time course for a single voxel from the slice. During this
interval the subject was presented a word, answered whether the word was a noun or verb,
then waited for another word. The signal scale is the percentage of change relative to a
baseline condition.
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Analysis

The vast majority of fMRI studies are analyzed using an approach called Statistical Para-
metric Mapping ([16]), which looks at the extent to which a voxel’s time series is explained
by a number of regressors in a General Linear Model.

These regressors reflect contrasts of interest (e.g. control condition versus task) as well
as other confounds and the analysis is univariate in that each voxel is fit separately. The
goal of the analysis is to generate a map that shows, for a particular contrast, the voxels
where the coefficient for that contrast is significantly different from 0 (e.g. a voxel that is
more active in the task condition than in the control condition).

This fit is often done with the pooled data from several subjects, after spatial smoothing
and normalization to fit a template brain. Therefore, if a given voxel is deemed active,
it’s both likely that it is so in most or all of the subjects and that, furthermore, several
neighbours will be as well (given the spatial smoothing). This cluster of activation is
colloquially known as a “brain blob”.

The typical result of this analysis is a set of centroid coordinates for these clusters on
the template brain. In essence, it is the answer to the question “are there brain locations that
act differently between two conditions”. Note that it is possible to devise more elaborate
contrasts in the presence of more conditions, though one would still have to specify the
relationship between them and the analysis would still be univariate. In general, we may
have many conditions whose relationship is not known a priori (would be necessary to
design contrasts) or no voxels showing significant sensitivity to a contrast or presence of
interactions between voxels, even as they all have a slight difference in value between
conditions that, pooled together, would have enough information [34].

All these issues can be addressed from a different viewpoint, that of asking whether
a machine learning classifier can be trained to predict a variable of interest (e.g. exper-
imental condition) using all the voxels available. This can be specialized by restricting
the voxels considered by location or behaviour, or the relationships between them, but the
underlying idea is the same: if the prediction can be made, the information exists and can
be found by dissecting the successful learning mechanism. The next section introduces
this idea in more detail.
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Decoding Information From fMRI Data With Linear Clas-
sifiers (Chapter 2)

As said earlier, there are two main aspects of concern in decoding variables of interest
from fMRI data. The first is showing that the variable of interest can be predicted from
the data in a statistically reliable manner, i.e. there’s enough information present, and also
revealing how the data encode the information needed to predict.

There is a growing amount of evidence that variables of interest can be predicted from
data in many different brain imaging domains. Part of this work was done by us [52]
and several other studies are reviewed in two excellent papers [27],[55], thus we will
only cite specific studies where required. The second aspect of decoding has mostly been
considered in terms of judging whether voxels with certain properties such as location or
selectivity of response to stimuli contained enough information to drive the learning of
a successful classifier. It will feature in this chapter through questions regarding voxel
selection and the hypothesis space of the algorithms being used to learn classifiers.

Both aspects require a notion of significance of a classification result, i.e. being able
to say that the result would be very unlikely if there were no relationship between the data
and the variable being predicted; i.e. that the observed accuracy of the classifier over a
particular set of test data was thus being obtained by chance.

While most studies rely on having a significant result in order to declare that decoding
took place, the manner in which this is generally done is often insufficient. One way in
which this can happen is not to take into account the fact that the classification result on a
test set is only an estimate of the true accuracy, the probability that the classifier will label
a test example correctly. Similarly, any derived measures (such as sets of selected voxels
or classifier weights on voxels) are a function of a random training set and thus have un-
certainty attached to them that needs to be quantified. [65] proposes a resampling-based
methodology to address this issue systematically, but this is not commonly used. The sec-
ond and more subtle way in which significance testing may be incorrect or insufficient
stems from the fact that in any analysis several choices have to be made, e.g. preprocess-
ing pipeline, classifier (and choice of regularization parameters), voxel selection method,
number of voxels used, cross-validation regime, among others. We do not consider the
interaction of preprocessing pipeline with classifier performance using different voxel se-
lection methods, for the sake of both brevity and simplicity, but refer the concerned reader
to [64] for a comprehensive overview of what is known regarding this issue.

This raises both the question of whether any choices are better all round – across clas-
sifiers, subjects, studies – and also that of whether choosing from many possible feature
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selection results changes how one ought to test for significance (it does). These questions
have been posed in isolation in the machine learning literature but not, to our knowledge,
as a whole.

This chapter introduces a methodology for addressing both the significance and the
comparison questions, for a subset of the choice possibilities above, and applies it to five
fMRI datasets. We also compare principled and expensive solutions versus cheap ana-
lytic approximations and show that the latter can provide reasonable results. We show
that the voxel selection choice matters and particular methods are better than others across
datasets; classifier choice matters much less if voxel selection is being used. Finally, we
examine the questions of whether voxel selection can be relied upon to identify informa-
tive voxels and whether the various methods for selection isolate different – rather than
redundant – sources of information. We will show that both things occur. For the former,
this is evidenced by the lack of overlap in sets of voxels picked in different cross-validation
foldsand, for the latter, by discrepancies in errors made by the same classifier using voxels
selected by the different methods.

The Support Vector Decomposition Machine (Chapter 3)

Learning problems in fMRI are often characterized by having tens of thousands of fea-
tures and only a small number of labelled training examples. This situation arises because
of the difficulty of collecting and labelling independent training examples; temporal auto-
correlation in sequences of fMRI images is very high and this means one often needs to
average many images to obtain a single example. Moreover, it is complicated to obtain
long sequences, both in terms of cost and also of having a subject in the scanner for a large
span of time.

In order to obtain good learning performance in this domain (and others with similar
characteristics, such as DNA microarrays) researchers often perform dimensionality re-
duction before learning a classifier ([52],[27],[55]. Two typical approaches to dimension-
ality reduction are feature selection (e.g., forward stepwise selection after scoring features
by some criterion, or regularizations that favour the use of few features) and feature syn-
thesis (e.g., singular value decomposition). The former is discussed in detail in Chapter 2
and thus this chapter focuses on the latter (as done in [6], [66] or [39], for instance).

In a typical feature synthesis approach we build new features based on the distribu-
tion of the independent variables in the training data, using algorithms like singular value
decomposition (SVD,[25]) or independent component analysis (ICA,[31]), to reach a sit-
uation with more examples than features. Unfortunately, feature spaces produced in this
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manner may not necessarily be good for classification, since they are derived without ref-
erence to the quantity we are trying to predict.

Consider, for example, examples (images) obtained while a subject was thinking about
items belonging to different semantic categories, and suppose that our task is to decide
which semantic category was present in each example. If we perform an SVD of this data,
the components extracted will capture image variability due to awareness, task control,
language use, the visual form of the cues given and many other factors. Most of these
dimensions of variability will have little information about the semantic category and,
if their variance is too high they may prevent the SVD from noticing the directions of
variation which would be useful for classification.

On the other hand, the basic idea of the SVD – trying to find a small set of features
which accurately describe the test data – seems sound. The problem is only that the SVD
performs its data reduction without paying attention to the classification problem at hand.
Thus we pose the question of whether we can combine dimensionality reduction and clas-
sification into a single learning algorithm.

In this chapter we introduce one such learning algorithm, the Support Vector Singular
Value Decomposition Machine (SVDM). To design the SVDM, we combine the goals of
dimensionality reduction and classification into a single objective function, and present an
efficient alternating-minimization algorithm for optimizing this objective. Like a Support
Vector Machine (SVM, [33]), the SVDM can be viewed as trading off between a classi-
fier’s hinge loss and the norm of a learned weight vector; however, instead of regularizing
with the 2-norm like the SVM, the SVDM regularizes with a norm derived from the goal
of reconstructing the design matrix. We present experiments showing that we can achieve
better learning performance and find lower-dimensional representations than approaches
that separate dimensionality reduction and classification into independent steps.

Support Vector DecompositionMachine Extensions (Chap-
ter 4)

The SVDM algorithm introduced in Chapter 3 produces a solution that is good for both
classifying and reconstructing the data. The linear classifier learnt places weights on each
dimension of the low-dimensional representation when classifying an example. In theory
these weights should suffice to indicate which dimensions relate to the variable being
predicted and thus allow interpretation, by looking at the changes in values across classes
in the low-dimensional representation or the pattern of activation in the corresponding

7



basis images. In practice this turns out to be hard to do, in that most dimensions show some
kind of class-influenced structure; if there were fewer it would be easier to understand their
collective relationship to the variable of interest.

In this chapter we show how the SVDM algorithm can be modified to produce solutions
where very few dimensions are used in prediction, while maintaining classification and
reconstruction performance at the same level of the original algorithm. This is done by
penalizing the weights of the linear classifier learnt by SVDM using a L1 rather than a
L2 norm, which causes most of them to be 0 and the corresponding dimensions to be
ignored in classification. This penalty is just one instance of a general principle; additional
penalties or constraints can be added to the optimization subproblem for each solution
component, as long as it remains convex. We show how this can be done for the basis
vector set component, by deriving a modification that favours spatially smooth fMRI data
basis eigenimages, and show that it produces the desired result on two fMRI datasets.

Chapter 3 considers only fMRI datasets with binary classification tasks. In Chapter
4 we show how the algorithm can be adapted to work with more than two classes, apply
SVDM to relevant fMRI datases and show that it compares favourably with linear SVMs
in terms of classification accuracy. Furthermore, we show that the low-dimensional repre-
sentations learnt can capture relationships between classes.

Finally, we introduce two different ways of extending the SVDM algorithm to use
fMRI data from multiple subjects. The main intuition behind this is the assumption that
the relationship between brain activation and the variable being predicted is similar across
various subjects. Therefore, both approaches described rely on building a model with
subject specific and subject independent parts, with the latter being used to capture the
relationship. We show that it is possible to learn multisubject models that perform as well
but not better than single subject models, using either approach, at least for the binary
classification problem datasets also used in Chapter 3.

Machine Learning Classifiers and Neuroscience

The goal of this thesis is to show that machine learning classifiers allow us to examine
fMRI data in ways that go beyond looking for individual voxels matching a specified pat-
tern of behaviour. This will range from showing that there is enough information in a
multivariate pattern of activation to predict a variable of interest to revealing how that
information is organized; in the limit, we would like to show how the classes being pre-
dicted are related to each other and how those relationships are underpinned by parts of
the pattern of activation.
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That said, the process of doing this also yielded benefits that are more general in terms
of machine learning applicability. The lessons learned in terms of training, applying and
evaluating classification results generalize to other domains with sparse, high-dimensional
datasets (such as DNA microarrays) where feature selection is necessary; furthermore, it’s
unclear that there is a better feature selection method. Rather, there may be many different
feature behaviours all of which can have some - but not all - relevant information.

SVDM is an attempt to deal with the fact that the sparse high-dimensional data may, in
addition, be more complex than usual due to the presence of many sources of activation.
Most of these are unrelated, or only partially related, to what we would like to predict and
thus act as a complex, structured noise. Furthermore, it has both a spatial and a temporal
dimension (especially in fast event-related designs) that may both provide additional lever-
age (e.g. spatial smoothness prior for classifier parameters) and hinder us through violated
assumptions (e.g. examples no longer being drawn independently, or appearing only as
mixtures). Finally, that same spatial structure also manifests in relationships between fea-
tures: we can expect correlation, mutual inhibition or more complex combinatorial codes.

The issues described in the previous paragraphs all go against the “traditional” setting
for machine learning: examples drawn i.i.d. from an example distribution, with more
examples than features and uncorrelated features. Our hope is that the work in this domain
shows that something can be learnt even when reality is far from this setting, in addition
to it being useful to domain experts.
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Chapter 2

Decoding Information From fMRI Data
With Linear Classifiers

The feasibility of predicting a variable of interest from fMRI data has been shown repeatedly, by us
and several others, using a variety of classifiers and of methods for selecting voxels to be used as
features. In all of this work the approach is generally to show that a prediction can be made and the
accuracy level is “significant” under a simple null hypothesis that the classifier used is operating at
chance level.

In this chapter we show that this approach can be too optimistic in what it deems significant.
Moreover, it does not take into account a situation where several classifiers, voxel selection methods
and numbers of voxels selected are used on the same dataset. We introduce a methodology that
allows us to:

• Find the “best” number of voxels to use with a given combination of classifier and voxel
selection method

• Report whether results are significant given that many classifiers and methods were used,
taking into account the choice of a “best” number of voxels and multiple subjects

• Determine whether a given classifier or voxel selection method choice works better than
others

using analytical solutions where possible and comparing them with exact solutions obtained
using more expensive nonparametric statistics.

We apply this methodology to the study of five different datasets from semantic categorization
experiments, with binary and multiclass problems of varying degrees of difficulty, using an assort-
ment of classifiers and voxel selection methods and showing that there are indeed better choices
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among these. Furthermore, we describe the results of experiments on the reliability of relating vox-
els to the label being predicted by considering linear classifier voxel weights and also the properties
of voxels selected by different methods.

2.1 Classifiers and Feature Spaces

2.1.1 Setting

All the studies in this chapter use voxels as features, i.e. a classifier will see example vectors x
where each entry corresponds to one of m brain voxels, x =< x1, . . . , xm >. Conversely, each
example corresponds to an image which, in these studies, is obtained by averaging a series of
consecutive brain images (either from a trial or from a block) which can be labelled in the same
way (e.g. “subject is thinking of Tools”). The studies are described in Section 2.3.1.

It would also be possible to use the temporal dimension of task performance by making features
be “voxels at a particular time point”, as done in our work [52] and [59],[40] among several others.
In order to ease comparison between studies and to further brevity we refrained from doing so in
this chapter. Using the temporal dimension can also introduce some dependency between examples
and violate the assumption of independence and identical distribution, which we resort to in the
analytic approaches described later.

2.1.2 Classifiers

Bayes Classifiers and Gaussian Naive Bayes

Bayes Rule tells us how to predict one of k classes from an example x

P (classk|x) =
P(x|classk)P(classk)

P(x)

in terms of the class conditional distribution P (x|classk).
The classifier obtained by assuming that that distribution is multivariate gaussian is the rule in

Linear Discriminant Analysis (LDA), if we assume all classes share the same covariance matrix,
or Quadratic Discriminant Analysis (QDA), if not [25].

If, furthermore, we assume that the class conditional distribution of each feature is independent
of the others, i.e. P (x|classk) =

∏m
j=1 P(xj|classk), then we have a Gaussian Naive Bayes

(GNB) classifier [51]. In addition, we will assume that the variance of each feature is the same
for all class conditional distributions. This assumption seems reasonable in fMRI data (if the noise
in each voxel is independent of its mean condition activation) and appears to lead to more robust
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estimates and better classifier accuracy by letting us pool data from multiple classes. Given this
assumption, GNB is equivalent to LDA with a diagonal covariance matrix. The parameters to learn
are the mean and variance (µ and σ2) in the normal distribution density function for each class (e.g.
class A) f(x|µA,σ2

A) = 1√
2πσ2

A

exp(−1
2(x−µA

σA
)2), with µA =

PnA
i=1 xi

n (index ranges over xi with

class A only) and σ2
A = σ2 =

Pn
i=1(xi−µxi )

2

n (index ranges over xi in all classes, subtracting the
respective class mean).

LDA/QDA have been used in fMRI before [65],[6], though always preceded by a dimension-
ality reduction process (generally a singular value decomposition) in order to train the classifier
having fewer dimensions than examples and be able to estimate a covariance matrix. An interesting
alternative that also works by expressing an image in terms of a basis set is Penalized Discriminant
Analysis (see [39]), which uses a basis of smooth images to represent the examples and trains an
LDA model with ridge terms on its covariance matrix on coefficient space (equivalent to a L2 norm
penalty on the classifier weights, see below).

Logistic Regression

Logistic Regression (LR,[25]) models P (classk|x) as

P (classk|x) =
exp(x′wk + w0,k)

1 +
∑K−1

j=1 exp(x′wj + w0,j)

for classes 1, . . . , K − 1 and

P (classk|x) =
1

1 +
∑k−1

j=1 exp(x′wj + w0,j)

for class K and fits parameterswj to maximize the log conditional likelihood
∑n

i=1 log(P (yi|xi)),
where xi is the ith example and yi is its label.

Unless the features are linearly independent - clearly not the case, since at the very least we can
expect many neighbouring voxels to be correlated - it’s generally necessary for stability reasons to
regularize the solutions wk by adding a term such as λ‖wk‖2 (L2 regularization) or λ‖wk‖1 (L1
regularization) to the log conditional likelihood to be maximized, for each class k. We use both of
these possibilities in the experiments in this chapter.

At classification time, the predicted class k for example x is maxkP (classk|x). Given that
the expressions for P (classk|x) above all have the same denominator, we can consider just the
numerators for the purpose of determining the maximum. From that perspective, the problem can
be viewed as the learningm-dimensional discriminantswk for each class such that maxk (x′wk +
w0,k) (plus the regularization term) is the predicted class label.
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Linear Support Vector Machine

A linear Support Vector Machine (SVM,[33]) learns am-dimensional discriminantw to minimize

‖w‖2
2 + λ

∑

i=1:n

h(yixi
′w)

where h is the hinge loss function

h(ρ) =

{
0 ρ ≥ 1
1 − ρ otherwise

and where yi is either -1 or 1. If the classification problem has more than two classes it generally
has to be converted into several binary problems. One way of doing this is to use a one versus rest
encoding, where one binary problem is created for each class. That problem is created by assigning
one label to all the examples in class k and another to examples in all other classes; this is done
for all K classes, yielding K binary classification problems. An alternative would be to use the
binary problems created via an error-correcting output code [14], but the results would be both
more computationally expensive to obtain and harder to interpret for our purposes.

When classifying a new example, we apply each of the binary problem discriminants wk to it
and predict the label k such that maxk x′wk + w0,k. This discriminant differs from the one learnt
by LR in that it maximizes the margin of the discriminating hyperplane, but is similar in that it is
regularized using the L2 norm of the weight vector.

Linear Discriminant as a common view, regularization

Both LR and SVM are generally expressed as linear discriminants with particular regularizations,
but so can GNB with the class-shared variance estimates. To see how, consider a situation with two
classes, A and B (this can be generalized to k classes by considering each of k− 1 against the kth).

Classification of a new example x is done by comparing the posterior probabilities for each
class, P (A|x) and P (B|x), and picking the class for which that posterior probability is highest.
Equivalently, one could also say we are considering the odds ratio R = P (A|x)

P (B|x) and deciding A if
the ratio is greater than 1 or B otherwise. By taking the logarithm of this ratio and assuming equal
prior probabilities over both classes (P (A) = P (B)), we can rewrite it as follows:

R = log
P (A|x)
P (B|x)

= log
P (x|A)P (A)
P (x|B)P (B)

= log
P (x|A)
P (x|B)

and the decision rule becomes “select class A if R > 0 or class B if R < 0”.

Applying the naive bayes assumption, R is turned into a sum of per-feature ratios
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R = Σn
j=1log

P (xj |Y = A)
P (xj |Y = B)

= Σn
j=1Rj(xj , µAj ,σAj , µBj ,σBj)

each of which is a function of the feature value xj and the means and standard deviations for the
two class conditional feature densities.

Each ratio Rj is a fraction of two normal distribution probability density functions, and so can
be rewritten as:

Rj(xj , µAj ,σAj , µBj ,σBj) = log

1q
2πσ2

Aj

exp(−1
2(xj−µAj

σAj
)2)

1q
2πσ2

Bj

exp(−1
2(xj−µBj

σBj
)2)

Given that we also assume that the class conditional distributions for each feature have the
same variance, the ratio Rj simplifies to the expression

Rj(xj , µAj , µBj ,σj) =
1

2σ2
j

(2(µAj − µBj)xj + µ2
Bj − µ2

Aj) =
µAj − µBj

σ2
j

xj +
µ2

Bj − µ2
Aj

2σ2
j

where xj stands by itself. The decision can thus be expressed in terms of a linear discriminant
w such that wj = µAj−µBj

σ2
j

and w0 =
∑m

j=1
µ2

Bj−µ2
Aj

2σ2
j

.

2.1.3 What can a linear classifier learn?

The hypothesis space for linear classifiers in sparse, high-dimensional datasets

As shown in the previous section, the four classifiers being considered - GNB, LRL1, LRL2 and
SVM - can be expressed as linear discriminants, either learning them directly or in a form that
is convertible. Given that the number of examples n is typically much larger than the number of
features m (tens-hundreds versus tens of thousands), it will always be possible to learn a linear
classifier that performs very well on the training set. A more formal justification for this is that the
VC dimension of a linear discriminant inm-dimensional space ism + 1 (see [51]), but we will not
pursue this further here.

If there are many possible linear classifiers that work equally well on the training set, and we
cannot obtain more training examples, how should one look for a classifier that does not overfit
and thus performs well on the test set? The two possibilities are to add regularization - either
directly on the discriminant or by assumptions about the distribution of features - or to reduce
the dimensionality using feature selection or a mapping to a low-dimensional space (e.g. using
Singular Value Decomposition,), though the latter is considered in Chapter 3 and Chapter 4. In
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the experiments in this chapter we use both regularization and feature selection, though resorting
only to the most generic approach for the former by using norms of discriminant voxel weight
vectors. A different direction would be to regularize using domain information, such as the fact
that the activations of neighbouring voxels can be related and thus the weights on those voxels
should not vary independently (used in [63] or [39], as well as in in our work [57] as described in
the subsequent chapters).

Voxel relationships and nonlinear classifiers

The classification decision using a linear classifier can be viewed as voting process over all features,
where feature j votes for a class via the sign of its respective weight and the confidence in that
vote is the magnitude of the weight. Hence none of the four classifiers above can incorporate the
interaction of two voxels into the decision, e.g. “class 1 if voxel A and voxel B both turn on or off
but not if only either one is on”.

A way of dealing with this particular example would be to add new synthetic features, such as
the product xAxB of every pair of voxels, either explicitly or implicitly (e.g. through the use of a
quadratic polynomial kernel in a SVM). If one desired more latitude in what functions of several
voxels could be considered, other SVM kernels or a neural network would be appropriate.

So why not use these classifiers instead of the linear classifiers above? The most serious issue
is that it would require training even more complicated models with a small dataset, increasing
the chance of overfitting. This could be alleviated by increasing the bias of these models via
regularization, if we knew what the appropriate regularization was. We could also use feature
selection, although the fact that this is typically done voxel by voxel might mean that the criteria
used would not take interesting relationships between the voxels into account to start with.

Existing studies that used nonlinear classifiers in addition to linear ones do not in general report
an improvement in results (see, for instance, [12] with SVMs or [24] with neural networks, where
the results are not better than ours using linear classifiers on the same dataset, D3 in Section 2.3).

Why could this be the case? The bleakest possibility is that, at the voxel scale currently used
(several mm2 per slice), there are no nonlinear relationships between voxels given how many
neurons are being subsumed into one measure and also that hemodynamic response is only a proxy
for neural activity. A different possibility, and assuming that feature selection did not remove
most voxels involved, is that we simply do not have the numbers of examples to support learning
these relationships. One way to ascertain this would be to perform experiments with synthetic data
containing such relationships in datasets of various sizes. A different direction would be to look
for them first at a local scale, since there are indications that there is interesting local structure
that can be leveraged ([38],[58]) and there would be many fewer features to consider (e.g. voxel
neighbourhoods of 3×3×3 or 5×5×5 voxels). Ideally, this would be done with the same subject
performing the same tasks and being scanned at various resolutions.
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2.1.4 Voxel scoring methods

In domains with many features (tens to hundreds of thousands or even higher) it is generally the
case that feature selection is a necessary step prior to training classifiers capable of attaining high
accuracy (e.g. text mining [73] and [15], DNA microarrays [70], fMRI [52]). Almost all the
fMRI decoding results reported in the literature used either feature selection or some other form of
dimensionality reduction ([55],[27],[6],[65]). Feature selection is too vast a topic to broach in great
detail here, but a useful review of both terminology and the general thrust of the various approaches
is given in ([20]). One distinction often made is between scoring/filtering and wrapper methods.
The former involves ranking the features by a given criterion and selecting the best in the ranking,
while the latter consists broadly in picking new features by how much impact they have on the
classifier given the features already selected. This can be done by repeatedly training and applying
the classifier in cross-validation within the training set. This can be advantageous in that it can
eliminate redundancy and also take advantage of the classifier ability to find relationships between
features, instead of having to relegate that to the selection method. Given the number of features
to choose from, however, it is expensive to do this withouth some simplifying heuristics. For that
reason, this chapter will be concerned solely with feature scoring methods.

A second issue has to do with which methods are suitable for this domain. In this chapter all
the datasets are such that voxels and features are one and the same, and the same is the case for
most fMRI decoding studies to date. Moreover, there is a desire to be able to specify desired voxel
behaviour (e.g. is a voxel very selective for one particular condition or discriminating between two
groups of conditions), location or other properties. The method choices in extant papers are driven
by this reason as much as by the wish for high accuracy. The scoring methods considered in this
chapter and listed below are a sample of the methods that have been proposed in those papers, with
some modifications:

• Activity - This method scores a voxel by the difference in its mean activity level during a task
condition versus a baseline condition. A voxel undergoes a t-test of its mean value during
each task condition, which can be of whether the mean is greater than 0 or of whether it is
different from 0. The former makes sense in datasets normalized so that 0 is the mean value
for each voxel during the baseline condition, whereas the latter would be more appropriate
if the normalization is to units of percent change from mean level across all conditions. For
practical reasons we apply both methods to all our datasets, expecting that one will be more
appropriate than the other, and refer to both as activity voxel scoring. The t-test for each
condition yields one ranking of voxels, the overall score of a voxel is its best position in any
ranking (ties are broken at random).

• Accuracy - This method scores a voxel by how accurately a classifier can predict the condi-
tion of each example in the training set, based only on the voxel. We use a Gaussian Naive
Bayes classifier (Section 2.1.2), as we perform cross-validation within the training set for
each voxel and thus need a very efficient classifier. The classifier thus learns the parame-
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ters of a gaussian distribution for the values the voxel takes, in each class, and uses that to
classify. The cross-validation accuracy is the voxel’s score.

• Searchlight Accuracy - The same as Accuracy, but instead of using the data from a single
voxel (classifier with one feature) we use the data from the voxel and its immediately adja-
cent neighbours in three dimensions (classifier with up to 27 features). This is a variant of a
a strategy proposed by [38].

• ANOVA - This method looks for voxels where there are reliable differences in mean value
across conditions (e.g. A is different from B C D, or AB from CD, etc). This is done using
an Analysis of Variance (ANOVA, [44]) to test the null hypothesis that the mean voxel value
for the various task conditions is the same. The score is the p-value (the lower, the better).

• Replicability - This method picks voxels that react to the various stimuli consistently across
runs/epochs (even if by being mostly inactive across time). In all our experiments the
datasets are divided into epochs or runs. Within each epoch/run there might be one or
more examples of each condition (e.g. in dataset D1 there are two categories of stimuli,
and for each category seven different exemplars, with each exemplar appearing once in an
epoch). This criterion aligns the values each voxel takes across exemplars/categories in
each given epoch/run, and considers the average correlation of this vector across all pairs of
epochs/runs.

• Range - This set of methods look only at the mean value a voxel takes across different task
conditions:

– max/min difference - the distance between the highest and lowest mean values
– max/second max difference - the distance between the highest and second highest
mean values

– max/median difference - the distance between the highest mean value and the median
of the others

– spread - the standard deviation of the sample of mean values
– max - the maximum value the voxel takes

• Logistic Regression Weights - This method trains a logistic regression classifier on the train-
ing set (with a penalty on the L2 norm of the weights vector, see Section 2.1.2) and scores
each voxel by the range between the largest and smallest weight across conditions. It is the
only one where the score of a voxel depends on the scores of others. The rationale for this
method is that it should find informative voxels while downplaying the weights of correlated
ones and thus lessening their score.

The most common feature selection methods used in fMRI are the ANOVA, some variation of
Activity and voxelwise or searchlight accuracy.
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2.2 Establishing the significance of decoding results

2.2.1 Classification, significance and decoding

Consider an ideal situation with a single classifier, trained on a large training set and applied to a
large test set. The accuracy on the test set is an estimate of the true accuracy of this classifier: the
probability that it will correctly label a new example drawn at random from the same distribution
the others came from. How good an estimate depends on the size of the test set; intuitively, the
larger it is the more confident we should be that the estimate is close to the true probability.

The person training a classifier on fMRI data is concerned with establishing that a variable of
interest can be decoded from it, i.e. a classifier can be trained whose true accuracy is better than
that of a classifier deciding at random. A significant result is thus one where one can reject the
null hypothesis that there is no information about a variable of interest. Establishing significance
is generally done by determining how improbable a classification results would be were the null
hypothesis to be true (this probability is called a p-value).

In this situation the probability of obtaining the result under this null hypothesis is easy to
calculate. It can be viewed as the outcome of tossing a coin for each of the examples to be classified,
with the coin’s bias reflecting the probability of labelling an example correctly by chance (50% in a
two class problem, 25% in a four class problem, etc). Thus, the p-value under this null hypothesis
of k correctly labelled test examples is simply P (X ≥ k) under a binomial distribution with n
trials and probability of success 0.5 (two class), 0.25 (four class), etc; if the p-value is below a
certain threshold (typically 0.05 or 0.01) the result will be declared significant. We will refer to the
process that leads to the result under the null hypothesis as the null model and, in particular, to this
one as the “coin toss null model”. This is essentially a one-sided hypothesis test on the parameter
of a binomial distribution.

2.2.2 Practical issues

The previous section describes a procedure for determining whether a single classification result
is significant. In practice, however, there isn’t generally a single accuracy number to consider. To
make this more precise, assume we have a dataset with n examples (hundreds) andm features (tens
of thousands). We are using cross-validation for training a series of classifiers C1, . . . , Cj , all of
which can be expressed as linear discriminants (logistic regression, linear SVM, etc). Assume also
that there is a need for voxel selection, with a choice of method M1, . . . , Mi (see Section 2.1.4
for details on the methods we will consider) to rank the features and also a choice of the number
of features (top 10, top 20, etc) to pick from that ranking. Each combination of classifier, ranking
method and number of voxels gives rise to an accuracy result â. More precisely, as we are doing
cross-validation we will obtain one such result for each train/test fold, but we will assume that
the same classifier was used to label all the test examples in the cross-validation, a reasonable
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assumption for reasons discussed in Section 2.2.3, and report the overall result combining all the
fold test sets.

The problem is how to go from having many possible results for each classifier and method
combination (one per number of voxels taken from the ranking) to a single “best” result b̂i. There
are three typical courses of action for doing this:

1. Run all combinations of voxel selection method and number of voxels selected and produce
a#methods×#voxels table of results, deciding a posteriori on a “best” result b̂i for each
method (usually the number of voxels at which the highest accuracy is attained, as used in
[52]).

FR methods — #voxels m1 . . . mk max accuracy
methodM1 â11 . . . â1k b̂1 = maxj â1j

. . . . . . . . . . . .
methodMi âi1 . . . âik b̂i = maxj âij

2. Use a method-specific answer for how many voxels to keep, if available. One example
of this would be testing whether each voxels’s mean is greater than 0 and keeping voxels
whose p-value under the 0 mean null hypothesis is significant, under a threshold taking into
account multiple comparisons (see [12] for a use of this approach). This gives us a set of si

significant voxels to use and produce the “best” result b̂i.

FR methods — #voxels significant # accuracy
methodM1 s1 b̂1 = âs1

. . . . . . . . .
methodMi si b̂i = âsi

3. Run a cross-validation within the training set (nested cross-validation, NCV) and essentially
produce a table of results similar to that in 1. This can be used to pick the number of voxels
at which the highest accuracy is attained for each method and use those voxels and the whole
training set to produce the classifier used on the test set (as suggested in [21]). This gives us
a set of ni voxels to use and produce the best result b̂i.

FR methods — #voxels NCV # accuracy
methodM1 n1 b̂1 = ân1

. . . . . . . . .
methodMi ni b̂i = âni
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The first approach is the one most commonly seen in most comparisons of several feature selection
methods. The maximum score for each method is picked and taken as “the” result for that method
(e.g. [73],[15],[60] among many others) for comparison purposes. This can lead to this final result
being optimistically biased, as explained in Section 2.2.4. Alternatively, one could test each entry
of the result table and correct for multiple comparisons by tightening the significance level for each
test. This would be excessively conservative for two reasons. The first is that the results in each
row are not independent; as the features are being ranked and increasingly larger sets of features
are selected, each classifier uses the same features the previous one did and decisions can thus be
correlated. The second is that the same dataset is being used to test. Therefore, paired t-tests would
be the correct technique to use (see Section 2.2.5).

The second approach is followed in some of the papers doing voxel selection in fMRI datasets
and is feasible as long as the method in question has a natural criterion for determining which
voxels significantly fulfill it; this generally entails setting a p-value threshold (e.g. 0.05 or 0.01)
after correcting for multiple comparisons, as many as there are voxels to select from. A possible
issue is that the number of voxels selected is not the one at which the highest accuracy could be
attained. Another is that no voxels are deemed significant, even though there is information present
(as seen, for instance, in [34]). While this could be dealt with by raising the p-value threshold,
it would make the method less principled in that it would become quite similar to using the first
approach with a single choice for the number of voxels. Finally, it’s possible that there will be no
clear way of testing the scores assigned by a given method to each voxel for statistical significance.

The third approach is extremely principled, in that it only uses the training set to make decisions
on how many voxels to use with each method and yields a single result per method to be tested.
Its main problems are that it is expensive to run a nested cross-validation and, as in the second
approach, there is no guarantee that the same number of features is used in every cross-validation
fold.

The rest of this chapter reviews the various issues arising from using the first approach in
obtaining answers to three questions:

1. Section 2.2.3 - For each classifier and feature ranking method, can we determine a “best”
number of features, i.e. a number of features at which the true accuracy higher, in a less
biased way?

2. Section 2.2.4 - How to determine whether such a result is significant, given that many num-
bers of voxels, methods and classifiers are being tried, for several subjects?

3. Section 2.2.5 - How to compare the “best” result for different classifiers and voxel ranking
methods? Do the choices interact?

Section 2.3 applies the techniques described to answer those questions over several fMRI
datasets, while also comparing those results to those that would be obtained using the third ap-
proach where possible instead. The references for the statistical concepts used in these sections are
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[67] (all sections), [44] (ANOVA) [36] (correction for multiple comparisons) and [19] (permutation
tests).

2.2.3 What is the “best” number of features?

For a fixed training set with a given number of features, a classifier learnt from it can be applied
to a test set to produce an accuracy value. A different test set would likely give rise to a different
accuracy value. What is the relationship between these values and the classifier’s true accuracy (the
probability of correctly labelling a test example drawn at random from the example distribution)?

Assuming there are n examples in a test set, let El be 1 if the lth example was classified
correctly and 0 otherwise. Then C =

∑n
l=1 is the number of correctly classified examples and

C ∼ Binomial(n, p), with p being the accuracy, np the mean and np(1−p) the variance. The test
set accuracy estimator is thus A = C

n , which has mean p and variance 1
n2 np(1 − p) = p(1−p)

n . For
a particular test set, we get an outcome of the random variable A.

This can be used to produce a confidence interval for the true accuracy of the classifier, as
the parameter of a binomial distribution. This can be done exactly (numerically) or via approx-
imations ([42]). The most commonly used approximation is to assume that the binomial can be
approximated by a normal distribution and resort to the customary two-sided confidence interval
for the mean parameter ([67]). This can be inappropriate in situations where n is small or p is at
either extreme, for instance, but not exclusively in those ([9]). We will therefore work with the
exact binomial distribution whenever possible (with the exception of the use of ANOVA for com-
paring many classification results in Section 2.2.5). A different possibility is to use resampling of
dataset train/test splits (e.g. [46] describes various schemes, [65] uses a 2-fold version in fMRI
data), though the estimates can be biased in some cases ([37]) and expensive to compute; this can
be justified if considering the distribution of other quantities besides the accuracy estimate, such as
features of the learnt model as considered in ([65]).

To further complicate things, we do not have a single training and test set but rather a sequence
of k-fold stratified cross-validation separate test sets (e.g. the proportion of class labels in the over-
all dataset is maintained in each training fold, see Section 2.3.1 for more details). There are many
empirical indications and some theoretical justifications that the k-fold cross-validation estimate
of accuracy is unbiased and binomial if the learning algorithm that produces the classifier is stable
across folds ([37],[47]), so we will make the assumption that the test labels were produced by the
same classifier for all examples).

Finally, we have not one but several classifier accuracy estimates. This is because we are in
the situation described in the previous section where, for a given training set and classifier, using
feature ranking method i and picking a certain number of features mk, we get a cross-validation
accuracy âik which is an estimate of the true accuracy aik. As the same classifier is trained using the
top m1, . . . mk features of the training set, we end up with a sequence of such accuracy estimates
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âi1, . . . , âik. The problem is to determine the number of features mk for which the true accuracy
aik is highest, given the sequence of accuracy estimates. Given that the accuracy estimate obtained
is a random variable, it’s not necessarily the case that this coincides with the number of features for
which the estimate is highest.

If successive estimates were independent (e.g. obtained from independently drawn test sets)
it would be no problem to produce correct, simultaneous confidence intervals for all of them by
tightening the confidence level as a function of the number of tests. The problem arises from the fact
that the features are ranked prior to selection and thus the set of mk+1 features contains the set of
mk (e.g. the top 10 are in the top 20, top 40, etc). This, combined with the fact that all the classifiers
considered are linear discriminants and hence compute a weighted combination of feature, will
virtually ensure that the predictions of the classifier using mk+1 features will correlated to some
degree with those of the classifier using mk. We try to avoid this in the experiments described
in Section 2.3 by making mk+1 be substantially larger than mk, but it cannot be entirely ruled
out. Furthermore, people generally are not interested in the whole curve but rather in its maximum
value, hence the focus on finding the number of features with the maximum true accuracy.

Each of the accuracy estimates can be viewed as a result of corrupting the accuracy with noise,
i.e.

âik = aik + εik

where εik has mean 0 and variance aik(1−aik)
n (dependent on aik and following the distribution

of test set accuracy described above).

The problem can thus be viewed as one of nonparametric regression, where the unknown
curve to be estimated is the sequence of true accuracies ai1, . . . , aik and the accuracy estimates
âi1, . . . , âik are the data points. Once the unknown curve is estimated its maximum gives us the
desired number of features.

Any of several nonparametric regression methods (see [68] for an overview) would work in
this case and the bandwidth parameter which controls the amount of smoothing introduced when
learning the estimate can be set using cross-validation ([68]). The combination of this and corre-
lation between successive accuracy estimates can, at worse, lead to undersmoothing ([56]) but the
precaution of bringing in lots of new features for every new estimate seems to address this to some
extent in our experimental datasets.

2.2.4 Which results are significant?

Using the method outlined in the previous section we know a “best” number of features and corre-
sponding accuracy b̂ij for each combination of feature ranking methodMi and classifier Cj , which
can be arranged as in Table 2.1.

The second question is whether any of the numbers in Table 2.1 allow us to conclude that the
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Classifiers C1 . . . Cj

FR methods
methodM1 b̂11 . . . b̂1j

. . . . . . . . .
methodMi b̂i1 . . . b̂ij

Table 2.1: For each combination of classifier Cj and feature ranking methodMi there is a
cross-validation accuracy using the “best” number of features.

corresponding classifier+method managed to decode the information we are interested in. This
is generally translated into a statement of the form “under the null hypothesis that the classifier
learnt nothing and predicts at random, the result obtained is significant”. As described earlier,
the probability of obtaining the result under this null hypothesis is easy to calculate, as it can be
viewed as the outcome of tossing a coin for each of the examples to be classified, with the coin’s
bias reflecting the probability of labelling an example correctly by chance (50% in a two class
problem, 25% in a four class problem, etc). Thus, the p-value under this null hypothesis of k
correctly labelled examples is simply P (X ≥ k) under a binomial distribution with n trials and
probability of success 0.5 (two class), 0.25 (four class), etc. f below a certain threshold α, the result
will be declared significant. This means that the probability of falsely rejecting the null hypothesis
(Type I error) is α.

This approach raises two issues. The first is that the threshold must be picked to compensate
for the fact that there are many entries in Table 2.1, as the chance of a false rejection becomes
much higher. This can be done using a criterion such as Bonferroni correction [67], which will
give us a threshold such that the overall chance of a false rejection is α, or the false discovery
rate [67], which gives us a threshold such that the proportion of false rejections to rejections of
the null hypothesis is α or less. The second issue is that what is really being tested is not simply
the accuracy of a classifier, but the accuracy using the “best” number of features as selected from
Table ?? in the previous section. This introduces an optimistic bias that could make some results
appear significant when they are not. To see why, consider a situation where the classifiers is using
different numbers of features and, in each case, is doing no better than chance. It’s not impossible
that, at least for one number of features, the accuracy will be fairly high; it becomes easier the
smaller the dataset is. If we are just deeming the “best” number of features to be the one at which
the maximum accuracy is attained, we would pick this score and possibly deem it significant. To
reiterate this in the terms used before: the “coin toss” null model is not appropriate to test the
significant of the accuracy at the “best” number of features. There are two possible ways of dealing
with this, described in the two following subsections.
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Permutation Test

Assuming there is no class information in the data, the labels can be permuted without altering
the expected accuracy using a given classifier and number of features (chance level), a classical
permutation test ([19] for a general introduction and also [18], which both reviews the use of
permutation tests in classification and also one neuroimaging application).

Given a dataset with permuted labels, we redo the entire process of using each feature ranking
method to order the features, training classifiers with varying numbers of them, smoothing the table
as described in Section 2.2.3 and picking the best number in each row, ending with the production
of something like Table 2.1. Over many permutations this yields a sample of accuracy results for
each cell in the table under the null hypothesis. The p-value under the null hypothesis for each
entry of Table 2.1 is the fraction of the corresponding sample that is greater than or equal to it.

The main problems of resorting to this approach are its computational cost and, related to that,
the possibility that the test is conservative. This stems from the fact that the lowest fraction possible
that is greater than 0 varies inversely with the number of permutations, e.g. the lowest nonzero p-
value with 1000 permutations is only 0.001. A possible way of getting around this is to assume that
the distribution of each cell in the table under the null hypothesis has a known form (e.g. normal)
and estimate the parameters from many fewer permutations (say, 100). We examine the feasibility
of doing this in Section 2.3.3.

Analytic Approximations

The alternative to using a permutation test is to try to devise a more appropriate null model. Given
the smoothing step incorporated in Section 2.2.3 it’s unclear whether the same result can be ob-
tained analytically, but there are a number of possible approximations.

The simplest such possibility is the model where, instead of having a single coin tossing classi-
fier labelling each example, we have as many of them as there are numbers of features selected. In-
tuitively, the idea is to capture the picking of a maximum score out of< numbers of features >
draws from the null hypothesis distribution. As in Section 2.2.3, this yields one accuracy number
per coin toss. The output of the process is the maximum of these accuracies. More formally, if
P (X ≤ x) is the c.d.f. for the accuracy count of a single coin toss classifier and Y is the maximum
of accuracy counts out of k coin tosses we have that

P (Y ≤ y) = P (X1 ≤ y
⋂

X2 ≤ y
⋂

. . .
⋂

Xk ≤ y) = P (X1 ≤ y) . . . P (Xk ≤ y)

is the c.d.f. for the maximum of k coin tosses, and can be adapted to produce a p-value under
the null hypothesis ( P (Y ≥ best result|null is true), so we need to compute P (Y < y)
instead). We will call this model “max row” and contrast it with “coin toss” and also the results of
permutation tests in the experiments described in Section 2.3. As we will see there, the model is
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simple but gives significance results closer to those of permutation tests also to those produced with
nested cross-validation; at the same time, it’s still completely analytical and thus cheap to compute.

The “max row” null model assumes a series of independent coin tosses; this clearly does not
hold, as the classifier using the top ni+1 features is also using the top ni features, and hence its
decisions will be correlated to some extent with those of the classifier using just the latter.

One possible way of addressing this while using the “max row” model is to attempt to introduce
many new features every time we select a new group, e.g. make ni+1 be substantially larger than
ni (say half the features are new). This is the approach we follow in the experiments described in
Section 2.3.

A more principled way of tackling the issue is to model the dependency between the decisions
of successive classifiers. To see how consider a given feature ranking method and the decisions of
a classifier trained using various numbers of features, n1, . . . , nk. Let El, ni = 1 if the lth example
was classified correctly by the classifier trained using the top ni features selected by the method,
and 0 if the example was classified incorrectly. The true accuracy of this classifier is P (El, ni) = 1.

The dependency between decisions of successive classifiers in this sequence can be modelled
as a Markov Chain. In this chain P (El,n1 = 1) being is the true accuracy of the first classifier in
the chain. Similar probabilities for the other classifiers can be computed from the previous one,
e.g. for the ni, ni+1 pair

P (El,ni+1 = 1) = P (El,ni+1 = 1|El,ni = 0)P (El,ni = 0)+P (El,ni+1 = 1|El,ni = 1)P (El,ni = 1)

These marginal probabilities could then be plugged in instead of those of variables assumed
independent in the “max row” null model described above. It is possible to estimate the transition
probabilities under the null hypothesis for each ni, ni+1 pair by permuting the example labels,
training and applying the classifiers and tallying the frequencies of the four transitions 0, 0, 0, 1,
1, 0 and 1, 1 across examples for the pair. However, it’s not clear how to combine the probabilities
estimated across many permutations and, as we shall see later, the simpler model that assumes
independent coin tosses is generally good enough.

2.2.5 Are there better classifiers or feature ranking methods?

The previous sections were concerned with the use of a single classifier and one or more feature
ranking methods for establishing the significance of classification results.

We would like to extend that comparison to multiple classifiers and feature ranking methods in
order to answer the following questions:

1. Is there a better (higher accuracy) classifier?

2. Is there a better feature ranking method?
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3. Is any combination superior?

for various datasets, in order to determine whether certain choices in either factor are preferrable
in general. A different reason for asking this kind of question would be to ascertain the extent to
which factors such as choices in the preprocessing pipeline affect classifiers and feature ranking
methods differently, for instance (as suggested and documented in [64]).

If one were simply comparing two classification results on independent test sets, one could use
a t-test to compare the means of two samples, where each sample is comprised of the outcomes of
variables El, 1 if the lth example was classifier correctly and 0 if not. If using the same test set, the
appropriate technique would be a paired t-test, i.e. a test of the mean of a sample constructed by
subtracting the El outcome in one sample from that in the other, for each example l. This and other
tests are explored extensively throughout the machine learning literature, but [47] is an excellent
introduction to the issues and both it and [13] contrast the theoretical expectations for some of the
tests with practical evaluations. Given that we are testing whether the mean of the constructed
sample is 0 we are essentially relying on the Central Limit Theorem (CLT,[9]) for the use of the
test to be valid, where the sample size is the number of examples tested. An alternate possibility
is to use a nonparametric version of the paired t-test, the Wilcoxon signed-rank test [44]. The only
assumptions required are that the sample points be independent draws (we are also assuming the
test examples are drawn independently, in any case) and that the sample be symmetric about a
median (under the null hypothesis that the two samples have the same median this would hold and
be 0). The drawback of using this approach is that it will be less powerful than the t-test, should
the number of examples be large enough to justify using the CLT.

This can be extended to comparisons of more outcome samples by using an ANOVA (Analysis
of Variance [44]) to test whether one can reject the null hypotheses that all the samples have the
same mean (or do so for the samples where a given classifier was used versus all others, and
analogously for feature ranking methods). As in the case of the t-test, obtaining all samples from
the same test set requires using the correlated samples version of ANOVA. Note that in that case
the two sample, one factor ANOVA is essentially the same as a two-sided paired t-test.

If the global null hypothesis that all classifiers considered have the same true accuracy is re-
jected, one can test any particular differences using Tukey’s HSD (Honestly Significantly Different,[44],
[36]) procedure, which will give a conservative threshold for considering any mean difference be-
tween two samples significant. Alternatively, we can use a paired t-test for each difference and
control for the many possibly correlated multiple comparisons using False Discovery Rate ([67]),
the approach we follow in Section 2.3.5.

In this case, we will consider a two-factor ANOVA: classifier and feature ranking method.
In this setting we can test the effect of each factor on mean difference (e.g. pool all the feature
rankings into a single sample for each classifier to consider the classifier effect) as well as their
interaction, by considering each cell of the table against the others.

There have been many uses of either ANOVA or paired t-tests for this purpose (the earliest
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we are considering here are [29], [47] and [13]), but we will consider a few recent studies to give
perspective on how a large comparison of classifiers can use these ideas in different ways.

The first study ([43]) compares the performance of classifiers learnt with various algorithms
over a range of datasets, using three different approaches. The first is exploratory and consists in
determining, for every dataset, the algorithm with the best accuracy and those whose accuracy is
within one standard deviation of it (assuming the accuracy p is normally distributed and the stan-
dard deviation is thus

√
p(1−p)

n , this assumption may not be reasonable for certain values of n and
p, see [9]). This gives a heuristic for determining whether an algorithm is better than others. A sec-
ond approach is to treat the accuracy on multiple datasets as sample points of classifier performance
and perform a one-factor ANOVA testing the difference in sample mean between classifiers, using
Tukey’s HSD criterion to determine which classifiers perform worse than the best one. The final
approach is to produce one ranking of classifiers in each dataset and consider the mean ranking of
each classifier across datasets, using an appropriate nonparametric test of the null hypothesis that
the algorithms are equally accurate on average.

The second study ([8]) also compares several classifier learning algorithms on a number of
datasets, but also evaluates them by a variety of performance metrics (rather than just using ac-
curacy). The best classifier is found for each metric and paired t-tests comparing performance in
cross-validation are used to determine which other classifiers are close enough to be deemed best
as well (a fixed p-value is used with no direct correction for multiple comparisons, though argu-
ments are given as to why it shouldn’t much change results). This is analogous to a certain extent
to a two factor ANOVA, with classifier and metric as the two factors. A second approach is to
bootstrap over both datasets and performance metrices, obtaining a distribution over rankings and,
in particular, over being the best classifier.

There are older studies cited in both of the above but the problem to be solved and methodol-
ogy used remain quite similar, though the classifiers considered change over time. One common
thread to these studies is that the datasets considered tend to have tens to hundreds of features
and generally at least as many examples as features, if not many more, so feature selection is not
considered in the classifier comparison. Conversely, there are several studies comparing several
feature selection methods on high-dimensional data ([73],[71],[60], [15], among many others), the
other dimension of our comparison. Generally, these contrasts are done by considering perfor-
mance curves of the classifier using varying numbers of features, and seeing whether any curves
dominate the others at any point (where “dominate” is defined by a criterion involving an infor-
mal confidence interval around each point, as typically no correction for multiple comparisons is
done, though paired t-tests are sometimes used). If the dataset sizes are large this generally does
not matter, as confidence intervals are extremely narrow. In our case, it does matter: the datasets
are small, many numbers of features may be tried and the results at successive numbers may be
correlated. Whereas we don’t compare at all numbers of features simultaneously (we are interested
in peak accuracy, with the smoothing correction described earlier, rather than one curve dominat-
ing others at all numbers of features), we do use the ANOVA counterpart of paired t-tests as well
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as a methodology that takes into account how many comparisons are being done and that feature
selection takes place.
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dataset stimulus details prediction task
D1 word 2 categories (buildings/tools), 84 examples 2 categories
D2 word 2 categories (buildings/tools), 60 examples 2 categories
D3 picture 8 categories, 96 examples 8 categories
D4 word 5 buildings/5 tools, 60 examples 10 items
D5 word+picture 12 categories, 360 examples 12 categories

Table 2.2: Dataset summary, please see Section 2.3.1 for more details.

2.3 Experimental Results

2.3.1 Datasets in this chapter

We considered five datasets drawn from four semantic categorization studies, with a particular clas-
sification task for each. The following sections describe the datasets and how examples are obtained
from them, as well as how they are used for classification. The information is also summarized in
Table 2.2.

Datasets D1, D2, D4 and D5

In the experiment performed to obtain these datasets the subject is shown a series of words. Each
word is the name of an item which is either a kind of tool or a kind of building, and the subject
performs the following task: think about the item and its properties while the word is displayed (3
seconds) and clear her mind afterwards (8 seconds of blank screen).

In all four datasets a trial is converted into an example by taking the average image during a 4
second span while the subject is thinking about the stimulus shown a few seconds earlier (these 4
seconds contain the expected peak of the signal during the trial, TR=1000msec).

• Dataset D1
There are 7 different items belonging to each of the two categories and 6 experimental
epochs. In each epoch all 14 items are named, without repetition; all 6 epochs have the
same items. Using each trial to obtain an example, this yields a total of 42 examples for
each of the two categories. The classification task is to predict the category of a example.
This dataset has three subjects.

• Dataset D2
This dataset is very similar to dataset D1 except for the fact that both word and picture
stimuli were used, in alternation. We excised the picture stimulus portion of the dataset (the
category classification task is far too easy) and retained the text stimulus portion as dataset
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D2. The classification task is to predict the category of a example. There are 5 items of each
category and 6 experimental epochs, which gives us a total of 30 examples for each of the
two categories. This dataset has six subjects.

• Dataset D4

This dataset was created from the same source as dataset D2, excising the text portion instead
and performing the classification task over items rather than categories. There are 5 items
of each category and 6 experimental epochs, which gives us a total of 6 classification task
examples for each of 10 item classes. This dataset has five subjects.

• Dataset D5

The task performed is the same as in the previous datasets, except that the subject is shown
a series of combined word and picture stimuli corresponding to an item (e.g. both the word
“train” and a drawing of a train), rather than just a picture of a word. Each item shown
belongs to one of 12 semantic categories: animals, body parts, buildings, parts of buildings,
clothing, furniture, insects, kitchen objects, manmade objects, tools, vegetables and vehicles.
The classification task is to predict the category of a example. There are 5 different items for
each category. There was one trial for each item in each of 6 experimental epochs, giving us
30 examples for each category. This dataset has one subject.

Dataset D3

In the experiment performed to obtain this dataset subjects were shown a series of pictures in
blocks, where each block contained images belonging to one of 8 categories: faces, houses, cats,
scissors, shoes, chairs, bottles and scrambled images of all the previous categories. There was
one block of each category per run, and a total of 12 runs. Images in each block were used to
produce an example, yielding a total of 12 classification task examples of each of the 8 categories.
Examples are generated by averaging all the images in a block (excluding transitions and one after
the beginning and one before the end). This dataset has four subjects.

Using the datasets for classification

All the datasets have a natural division into parts, corresponding to either separate scanner runs
(12 runs in D3) or epochs (6 epochs in all other datasets). This division can be exploited to per-
form a leave-one-epoch/run-out cross-validation, with the additional desirable consequence that
the training set in each fold has the same number of examples of each class.

The datasets have undergone a typical fMRI preprocessing stream from DICOM files using
either SPM ([61],D1,D2,D4,D5) or AFNI ([2],D3). The steps followed are volume registration,
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slice acquisition timing correction and some outlier removal, followed by a voxelwise linear de-
trending in the datasets acquired in a single run (D1,D2,D4,D5) or in each run (D3). D3 voxels
were normalized to be zero mean and unit standard deviation across time, within each run.

In all datasets examples are generated by averaging a series of images, be it those at the peak of
a trial (D1,D2,D4,D5) or most of the images in a block (D3). Examples are thus images and voxels
are the features. In each average image only between 10000 and 20000 of voxels those contain
cortex in a typical subject; hence, the voxels used as features were those that were contained in a
brain mask as determined automatically by SPM or AFNI.

Each example is further processed by subtracting its spatially pooled mean and dividing by its
spatially pooled standard deviation.

2.3.2 Result Summaries

Result measures

In each crossvalidation, and for every set of voxels selected from the training set, a classifier is
trained and labels are predicted for the examples in the fold test set. The final performance measure
is accuracy, simply the fraction of the examples for which the label was predicted correctly when
the example was on the test set, both for binary and multiclass classification problems.

In the problems with more than two classes this may be a relatively harsh measure, in that the
classifier receives no credit for almost-right predictions (e.g. if prediction is a ranking of labels
from which we pick the top, the classifier gets no credit for making the correct label be the second
highest). An alternative measure that addresses this is the normalized rank accuracy:

rank accuracy = 1 − average rank of correct label− 1
# classes− 1

In the two class case this collapses to the accuracy measure. Whereas this measure may be
preferrable as the number of classes increases, it is necessary to examine the classification decisions
in detail; for instance, is a high rank accuracy the product of always getting the correct label close to
but not at the top of the ranking, or a mix of correct and incorrect placements? Another possibility
is that classes have a similarity structure that can be distinguished, such as natural object versus
artificial object, but within which it’s much harder to distinguish individual classes.

Without this careful analysis this type of result can be misleading and, for that reason and to
avoid detracting from the main point of introducing a classification comparison methodology we
do not use this measure further in this chapter.
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method number method name
1 accuracy
2 accuracy (searchlight)
3 activity (different from 0)
4 activity (greater than 0)
5 logistic regression weights
6 class mean ANOVA
7 replicability
8 range (highest-lowest)
9 range (highest-second highest)
10 range (highest-median)
11 range (sample standard deviation)
12 range (maximum value)

Table 2.3: Numbers used to indicate each voxel ranking method throughout tables and
figures in this chapter.

Result tables

Throughout the rest of the chapter the results reported will pertain to a series of voxel ranking
methods, numbered 1 through 12. The key relating those numbers to the methods is in Table 2.3; a
more complete description of each method can be found in Section 2.1.4.

Table 2.4, Table 2.5, Table 2.6 and Table 2.7 contain the set of results for one subject in each
dataset, using a GNB classifier, for each combination of voxel ranking method (row) and number
of voxels used (column). This level of detail is shown to give an idea of how the result change as
the number of voxels changes. At the right of each table there are four additional columns: all,
max, smooth and CV. These contain summary results for each table row, respectively the accuracy
using all available voxels (all), maximum accuracy (max), the maximum accuracy after smoothing
of the table row was done (smooth, as described in Section 2.2.3) and the accuracy obtained if
nested cross-validation was done to select the number of voxels from the ranking produced by each
method (CV, as described in Section 2.2.2).

Each of these tables shows that voxel selection can greatly improve the maximum accuracy
relative to a classifier using all voxels; at the same time, it highlights how much the accuracy can
change depending on howmany selected voxels are used, let alone on what method is used to do so.
In order to examine trends in the three accuracy summary values, Table 2.9, Table 2.10, Table 2.11,
Table 2.12 and Table 2.13 contrast those summary values for all the subjects in each of the five
studies.

Across studies and subjects it is clear that the nested cross-validation accuracy is consistently
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FS 10 20 40 80 150 300 600 900 1200 1800 all max max CV #
voxels (smooth)

1 0.77 0.83 0.81 0.81 0.80 0.79 0.73 0.73 0.74 0.71 0.65 0.83 0.81 0.77
2 0.81 0.80 0.80 0.82 0.83 0.82 0.80 0.79 0.75 0.75 0.65 0.83 0.83 0.81
3 0.56 0.68 0.74 0.79 0.80 0.76 0.71 0.74 0.73 0.71 0.65 0.80 0.80 0.75
4 0.56 0.68 0.75 0.80 0.79 0.81 0.77 0.76 0.75 0.74 0.65 0.81 0.81 0.77
5 0.74 0.73 0.74 0.75 0.79 0.74 0.77 0.76 0.79 0.77 0.65 0.79 0.77 0.77
6 0.81 0.80 0.80 0.76 0.76 0.76 0.74 0.71 0.71 0.70 0.65 0.81 0.81 0.80
7 0.71 0.79 0.81 0.81 0.81 0.76 0.71 0.70 0.71 0.71 0.65 0.81 0.81 0.77
8 0.60 0.67 0.65 0.70 0.70 0.70 0.69 0.70 0.71 0.68 0.65 0.71 0.70 0.65
9 0.60 0.67 0.65 0.70 0.70 0.70 0.69 0.70 0.71 0.68 0.65 0.71 0.70 0.65
10 0.60 0.67 0.65 0.70 0.70 0.70 0.69 0.70 0.71 0.68 0.65 0.71 0.70 0.65
11 0.60 0.67 0.65 0.70 0.70 0.70 0.69 0.70 0.71 0.68 0.65 0.71 0.70 0.65
12 0.63 0.63 0.71 0.69 0.69 0.69 0.71 0.71 0.73 0.74 0.65 0.74 0.74 0.73

Table 2.4: Classification accuracy using GNB on datasets with varying numbers of voxels
(columns), selected with each of 12 methods (rows), for subject 01481B from dataset D1.
Each row has four summary results: the accuracy using all available voxels (all), maximum
accuracy (max), the maximum accuracy after smoothing of the row (max smooth) accuracy
using nested cross-validation to select the number of voxels to use.

FS 10 20 40 80 150 300 600 900 1200 1800 all max max CV #
voxels (smooth)

1 0.57 0.62 0.73 0.70 0.67 0.70 0.78 0.70 0.70 0.72 0.73 0.78 0.78 0.65
2 0.50 0.67 0.65 0.72 0.77 0.77 0.78 0.78 0.77 0.75 0.73 0.78 0.77 0.67
3 0.53 0.60 0.58 0.70 0.70 0.68 0.68 0.68 0.63 0.72 0.73 0.72 0.68 0.60
4 0.53 0.58 0.60 0.63 0.65 0.72 0.70 0.75 0.75 0.72 0.73 0.75 0.74 0.63
5 0.62 0.60 0.63 0.62 0.63 0.67 0.73 0.75 0.75 0.75 0.73 0.75 0.75 0.67
6 0.52 0.50 0.63 0.60 0.67 0.73 0.73 0.77 0.72 0.73 0.73 0.77 0.74 0.67
7 0.55 0.60 0.58 0.63 0.60 0.67 0.67 0.70 0.68 0.72 0.73 0.72 0.70 0.62
8 0.63 0.60 0.58 0.60 0.62 0.67 0.65 0.70 0.68 0.67 0.73 0.70 0.68 0.67
9 0.63 0.60 0.58 0.60 0.62 0.67 0.65 0.70 0.68 0.67 0.73 0.70 0.68 0.67
10 0.63 0.60 0.58 0.60 0.62 0.67 0.65 0.70 0.68 0.67 0.73 0.70 0.68 0.67
11 0.63 0.60 0.58 0.60 0.62 0.67 0.65 0.70 0.68 0.67 0.73 0.70 0.68 0.67
12 0.52 0.55 0.60 0.50 0.53 0.58 0.57 0.63 0.63 0.70 0.73 0.70 0.66 0.67

Table 2.5: Same as Table 2.4 for subject 02607B from dataset D2
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FS 10 20 40 80 150 300 600 900 1200 1800 all max max CV #
voxels (smooth)

1 0.67 0.69 0.70 0.75 0.75 0.75 0.68 0.66 0.64 0.57 0.27 0.75 0.75 0.70
2 0.42 0.61 0.67 0.72 0.78 0.73 0.70 0.70 0.71 0.70 0.27 0.78 0.78 0.71
3 0.52 0.69 0.74 0.80 0.77 0.78 0.75 0.70 0.69 0.64 0.27 0.80 0.80 0.79
4 0.53 0.70 0.78 0.80 0.79 0.79 0.77 0.74 0.67 0.67 0.27 0.80 0.80 0.77
5 0.71 0.75 0.79 0.80 0.80 0.82 0.77 0.75 0.73 0.71 0.27 0.82 0.82 0.76
6 0.68 0.67 0.71 0.73 0.78 0.80 0.75 0.71 0.70 0.67 0.27 0.80 0.80 0.80
7 0.48 0.61 0.67 0.73 0.74 0.79 0.73 0.71 0.69 0.67 0.27 0.79 0.79 0.78
8 0.58 0.68 0.66 0.75 0.71 0.76 0.71 0.72 0.68 0.64 0.27 0.76 0.73 0.71
9 0.44 0.45 0.53 0.62 0.69 0.72 0.68 0.61 0.59 0.55 0.27 0.72 0.72 0.69
10 0.46 0.44 0.66 0.68 0.73 0.71 0.71 0.68 0.67 0.60 0.27 0.73 0.71 0.71
11 0.53 0.66 0.69 0.73 0.71 0.73 0.71 0.72 0.69 0.64 0.27 0.73 0.73 0.67
12 0.46 0.57 0.66 0.71 0.73 0.76 0.77 0.76 0.73 0.68 0.27 0.77 0.77 0.76

Table 2.6: Same as Table 2.4 for subject subj6 wp from dataset D3

FS 10 20 40 80 150 300 600 900 1200 1800 all max max CV #
voxels (smooth)

1 0.37 0.48 0.52 0.58 0.68 0.72 0.67 0.60 0.53 0.47 0.23 0.72 0.72 0.67
2 0.50 0.55 0.73 0.80 0.85 0.85 0.87 0.85 0.87 0.82 0.23 0.87 0.87 0.83
3 0.30 0.37 0.52 0.53 0.55 0.72 0.68 0.63 0.60 0.55 0.23 0.72 0.72 0.53
4 0.33 0.42 0.47 0.67 0.73 0.73 0.73 0.70 0.65 0.65 0.23 0.73 0.73 0.65
5 0.30 0.55 0.65 0.67 0.68 0.73 0.75 0.65 0.58 0.48 0.23 0.75 0.75 0.57
6 0.67 0.77 0.83 0.90 0.83 0.85 0.73 0.68 0.62 0.58 0.23 0.90 0.90 0.82
7 0.67 0.77 0.80 0.88 0.88 0.85 0.80 0.68 0.63 0.65 0.23 0.88 0.88 0.87
8 0.20 0.45 0.52 0.53 0.52 0.58 0.60 0.52 0.53 0.47 0.23 0.60 0.60 0.52
9 0.25 0.27 0.37 0.52 0.37 0.47 0.43 0.45 0.42 0.40 0.23 0.52 0.44 0.30
10 0.15 0.27 0.37 0.37 0.53 0.58 0.57 0.53 0.55 0.43 0.23 0.58 0.58 0.43
11 0.12 0.35 0.58 0.57 0.57 0.58 0.62 0.57 0.57 0.45 0.23 0.62 0.62 0.57
12 0.30 0.38 0.42 0.58 0.63 0.68 0.67 0.68 0.63 0.55 0.23 0.68 0.68 0.63

Table 2.7: Same as Table 2.4 for subject 02553B from dataset D4
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FS 10 20 40 80 150 300 600 900 1200 1800 all max max CV #
voxels (smooth)

1 0.31 0.41 0.42 0.47 0.47 0.50 0.51 0.46 0.46 0.43 0.22 0.51 0.49 0.46
2 0.19 0.21 0.31 0.38 0.46 0.51 0.53 0.52 0.51 0.49 0.22 0.53 0.53 0.52
3 0.18 0.22 0.27 0.36 0.40 0.43 0.45 0.45 0.43 0.41 0.22 0.45 0.45 0.42
4 0.18 0.21 0.28 0.37 0.41 0.41 0.45 0.46 0.45 0.42 0.22 0.46 0.46 0.44
5 0.32 0.34 0.46 0.49 0.47 0.50 0.47 0.44 0.44 0.43 0.22 0.50 0.50 0.45
6 0.29 0.36 0.42 0.47 0.51 0.52 0.53 0.52 0.49 0.45 0.22 0.53 0.53 0.52
7 0.31 0.36 0.44 0.50 0.50 0.53 0.53 0.51 0.49 0.46 0.22 0.53 0.53 0.54
8 0.29 0.36 0.36 0.41 0.40 0.43 0.42 0.41 0.39 0.36 0.22 0.43 0.42 0.40
9 0.20 0.30 0.32 0.36 0.40 0.41 0.37 0.35 0.32 0.31 0.22 0.41 0.41 0.41
10 0.26 0.27 0.34 0.43 0.44 0.46 0.45 0.43 0.39 0.36 0.22 0.46 0.46 0.43
11 0.25 0.27 0.33 0.38 0.42 0.40 0.42 0.40 0.39 0.37 0.22 0.42 0.42 0.41
12 0.19 0.25 0.28 0.35 0.39 0.39 0.43 0.43 0.42 0.41 0.22 0.43 0.43 0.41

Table 2.8: Same as Table 2.4 for subject 03616B from dataset D5

lower than the maximum accuracy. It’s also interesting to note that the smoothed maximum is al-
most always less than or equal to the maximum and many times in between the other two estimates.
Note that we are both comparing two different classification procedures (select a number of voxels
to use for each cross-alidation fold versus select a fixed number) and two different measures of
accuracy. The nested cross-validation accuracy is an unbiased estimate of the true accuracy of a
classifier trained with that procedure, whereas the maximum is a function of many unbiased (and
possibly correlated) estimates. The two values are shown to suggest the extent of the bias intro-
duced by computing the maximum. In Section 2.3.3 we consider a more appropriate comparison:
does either procedure lead to declaring that the same classifier/method can decode with significant
accuracy, under the appropriate null model for each procedure?
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FS 01481B 01482B 01897B
method max smooth CV max smooth CV max smooth CV
1 0.83 0.81 0.77 0.79 0.77 0.75 0.81 0.81 0.77
2 0.83 0.83 0.81 0.80 0.78 0.75 0.82 0.82 0.80
3 0.80 0.80 0.75 0.71 0.70 0.69 0.81 0.81 0.76
4 0.81 0.81 0.77 0.73 0.73 0.71 0.86 0.86 0.85
5 0.79 0.77 0.77 0.77 0.77 0.74 0.83 0.83 0.81
6 0.81 0.81 0.80 0.79 0.79 0.74 0.83 0.83 0.80
7 0.81 0.81 0.77 0.77 0.76 0.71 0.83 0.83 0.80
8 0.71 0.70 0.65 0.75 0.75 0.74 0.81 0.80 0.77
9 0.71 0.70 0.65 0.75 0.75 0.74 0.81 0.80 0.77
10 0.71 0.70 0.65 0.75 0.75 0.74 0.81 0.80 0.77
11 0.71 0.70 0.65 0.75 0.75 0.74 0.81 0.80 0.77
12 0.74 0.74 0.73 0.73 0.73 0.68 0.82 0.82 0.81

Table 2.9: maximum row accuracies in D1 (chance 0.5, 84 examples)

FS 02452B 02497B 02509B 02553B 02607B 02714B
method max smooth CV max smooth CV max smooth CV max smooth CV max smooth CV max smooth CV
1 0.80 0.80 0.65 0.90 0.90 0.83 0.88 0.88 0.78 0.78 0.78 0.53 0.78 0.78 0.65 0.98 0.98 0.95
2 0.88 0.88 0.78 0.93 0.93 0.90 0.90 0.89 0.87 0.88 0.87 0.77 0.78 0.77 0.67 0.97 0.97 0.97
3 0.70 0.66 0.57 0.75 0.75 0.70 0.83 0.83 0.78 0.88 0.88 0.75 0.72 0.68 0.60 0.97 0.97 0.97
4 0.68 0.68 0.62 0.78 0.77 0.72 0.83 0.80 0.75 0.90 0.90 0.80 0.75 0.74 0.63 0.95 0.95 0.95
5 0.82 0.82 0.75 0.93 0.93 0.83 0.88 0.86 0.78 0.87 0.87 0.78 0.75 0.75 0.67 0.98 0.98 0.97
6 0.82 0.79 0.78 0.92 0.91 0.92 0.88 0.86 0.80 0.83 0.83 0.75 0.77 0.74 0.67 0.98 0.98 0.97
7 0.77 0.72 0.77 0.95 0.95 0.93 0.90 0.87 0.80 0.78 0.78 0.68 0.72 0.70 0.62 0.98 0.98 0.95
8 0.68 0.68 0.65 0.88 0.86 0.87 0.82 0.79 0.67 0.80 0.80 0.63 0.70 0.68 0.67 0.98 0.98 0.95
9 0.68 0.68 0.65 0.88 0.86 0.87 0.82 0.79 0.67 0.80 0.80 0.63 0.70 0.68 0.67 0.98 0.98 0.95
10 0.68 0.68 0.65 0.88 0.86 0.87 0.82 0.79 0.67 0.80 0.80 0.63 0.70 0.68 0.67 0.98 0.98 0.95
11 0.68 0.68 0.65 0.88 0.86 0.87 0.82 0.79 0.67 0.80 0.80 0.63 0.70 0.68 0.67 0.98 0.98 0.95
12 0.63 0.63 0.60 0.82 0.82 0.80 0.78 0.77 0.77 0.75 0.74 0.72 0.70 0.66 0.67 0.93 0.93 0.93

Table 2.10: maximum row accuracies in D2 (chance 0.5, 60 examples)
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FS subj1ii subj2ss subj4jj subj6wp
method max smooth CV max smooth CV max smooth CV max smooth CV
1 0.85 0.85 0.88 0.67 0.67 0.64 0.65 0.65 0.65 0.75 0.75 0.70
2 0.84 0.84 0.83 0.74 0.74 0.71 0.65 0.65 0.55 0.78 0.78 0.71
3 0.86 0.86 0.84 0.61 0.61 0.60 0.61 0.61 0.56 0.80 0.80 0.79
4 0.86 0.86 0.81 0.64 0.64 0.62 0.64 0.64 0.59 0.80 0.80 0.77
5 0.94 0.94 0.92 0.91 0.91 0.78 0.77 0.77 0.77 0.82 0.82 0.76
6 0.92 0.92 0.92 0.89 0.89 0.81 0.73 0.71 0.64 0.80 0.80 0.80
7 0.91 0.91 0.91 0.83 0.83 0.77 0.73 0.73 0.69 0.79 0.79 0.78
8 0.85 0.85 0.85 0.70 0.70 0.64 0.70 0.70 0.58 0.76 0.73 0.71
9 0.76 0.76 0.77 0.53 0.51 0.49 0.59 0.59 0.54 0.72 0.72 0.69
10 0.81 0.80 0.83 0.70 0.70 0.68 0.64 0.64 0.59 0.73 0.71 0.71
11 0.85 0.85 0.85 0.75 0.75 0.68 0.69 0.69 0.69 0.73 0.73 0.67
12 0.91 0.91 0.90 0.78 0.78 0.76 0.65 0.65 0.58 0.77 0.77 0.76

Table 2.11: maximum row accuracies in D3 (chance 0.125, 96 examples)

FS 02553B 02565B 02607B 02714B 02745B
method max smooth CV max smooth CV max smooth CV max smooth CV max smooth CV
1 0.72 0.72 0.67 0.35 0.35 0.30 0.62 0.58 0.45 0.33 0.31 0.20 0.62 0.62 0.40
2 0.87 0.87 0.83 0.65 0.61 0.62 0.82 0.82 0.63 0.65 0.64 0.45 0.82 0.82 0.68
3 0.72 0.72 0.53 0.38 0.38 0.28 0.60 0.60 0.40 0.35 0.32 0.22 0.58 0.58 0.48
4 0.73 0.73 0.65 0.42 0.42 0.30 0.60 0.60 0.53 0.42 0.42 0.33 0.68 0.68 0.55
5 0.75 0.75 0.57 0.42 0.37 0.28 0.48 0.48 0.42 0.38 0.38 0.33 0.50 0.50 0.37
6 0.90 0.90 0.82 0.62 0.62 0.55 0.68 0.68 0.58 0.55 0.55 0.33 0.82 0.82 0.57
7 0.88 0.88 0.87 0.62 0.60 0.52 0.73 0.73 0.63 0.57 0.56 0.40 0.80 0.79 0.65
8 0.60 0.60 0.52 0.28 0.27 0.23 0.45 0.45 0.38 0.30 0.29 0.27 0.33 0.33 0.28
9 0.52 0.44 0.30 0.25 0.25 0.18 0.30 0.29 0.28 0.33 0.30 0.28 0.27 0.21 0.20
10 0.58 0.58 0.43 0.27 0.27 0.18 0.42 0.39 0.30 0.37 0.37 0.20 0.27 0.24 0.22
11 0.62 0.62 0.57 0.28 0.27 0.25 0.45 0.45 0.33 0.32 0.32 0.28 0.35 0.35 0.33
12 0.68 0.68 0.63 0.33 0.33 0.28 0.53 0.49 0.45 0.52 0.52 0.48 0.58 0.58 0.50

Table 2.12: maximum row accuracies in D4 (chance 0.1, 60 examples)
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FS 03616B
method max smooth CV
1 0.51 0.49 0.46
2 0.53 0.53 0.52
3 0.45 0.45 0.42
4 0.46 0.46 0.44
5 0.50 0.50 0.45
6 0.53 0.53 0.52
7 0.53 0.53 0.54
8 0.43 0.42 0.40
9 0.41 0.41 0.41
10 0.46 0.46 0.43
11 0.42 0.42 0.41
12 0.43 0.43 0.41

Table 2.13: maximum row accuracies in D5 (chance 0.083, 360 examples

2.3.3 Null model comparisons

The overarching question answered by this section is whether the “max row” null model described
in Section 2.2.4 is appropriate for judging the significance of results obtained with the procedure
where we pick the maximum value of a smoothed row of the accuracy table (MSR).

Significance under various null models

In Section 2.2.4 we discussed the appropriateness of various null models for determining the sig-
nificance of MSR results. In this section we compare four of them

• coin toss - assume that the classifier is predicting the label randomly

• max of row of coins - assume that the classifier is predicting at random for each entry in a
table row and that the maximum accuracy in the row is being selected

• permutation test - permute labels, create a result table, smooth each row, pick the maximum
accuracy in the row; over many permutations (1000), this generates a distribution of values
of the maximum number in each row

• permutation test (normal) - same as permutation test, but assume the distribution of values
is normal and estimate its parameters from a smaller set (100)
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on the same results to determine how much difference the null model choice makes in terms of
what results are deemed significant. The result table is smoothed using the procedure described in
Section 2.2.3 and the maximum of each row is the value tested for significance.

The comparison is done only for results obtained with the GNB classifier, the fastest, given the
expense of computing result tables for all subjects and studies after 1000 different permutations of
the labels (several weeks of computation time on a 12 node cluster).

Each null model is used to obtain p-values for the values being tested. These are then thresh-
olded with the values for all methods and subjects pooled together and using a bonferroni correction
with significance level 0.01.

Figure 2.1, Figure 2.2, Figure 2.3, Figure 2.4 and Figure 2.5 show the values being tested
(leftmost) and their significance under each of the four null models. Although we have no ground
truth as to which results really are significant, we will treat the permutation test results as a surrogate
for it. The determination of significance in that case may be conservative for the reasons indicated
in Section 2.2.4 but, in particular, the fact that the number of permutations we could afford to do,
1000, may limit how small the p-value of a result under the permutation distribution is. Given that
a few results are still deemed significant even then, we think it may not be unacceptably so.

Given that, it’s clear that coin toss is optimistic in terms of what is declared significant. The
max row model lies somewhere in between coin toss and the permutation test results in terms of
how many things are declared significant. Curiously, it’s closer to the permutation test in binary
classification problems and to the coin toss in the multiple class problems. This might happen
for two reasons. On one hand, it’s easier for a fairly accurate result in the latter to be deemed
significant as the number of classes increases and the expected accuracy under the null hypothesis
becomes lower and lower. On the other, in a binary classification problem it’s possible that, even
after permutation, many labels end up in examples belonging to the same class as the example they
originally belonged to.

Finally, the results indicate that it is possible to shortcut the permutation test by assuming that
the distribution of each entry in the result table over permutations is normal, though the results
might be even more conservative. This suggests running permutation tests for 10% or less of
the number of runs one would usually run them for and finding whether any results are already
significant prior to proceeding with more runs.
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Figure 2.1: Comparison of result significance under various null models, for subjects in
dataset D1 (rows). The first column contains the accuracy results using the best number of
voxels selected with each of the 12 methods. The remaining columns contain the signif-
icance of the results in the first column under each of the null models (red is significant,
blue is not).
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Figure 2.2: Same as Figure 2.1, for dataset D2
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Figure 2.3: Same as Figure 2.1, for dataset D3
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Figure 2.4: Same as Figure 2.1, for dataset D4
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Figure 2.5: Same as Figure 2.1, for dataset D5

Significance of smoothed table versus nested crossvalidation

In Section 2.2.4 we concluded that the NCV results should not be directly compared with those
obtained by picking the maximum of the rows of the smoothed table (MSR), since the former are
unbiased accuracy estimates while the latter are the maxima of several correlated estimates.

On the other hand, the NCV procedure is one for which “coin toss” is the correct null model
under the null hypothesis that there is no information to be decoded. Therefore, another way of
validating null models for the MSR procedure is to compare what they deem significant with what
was deemed significant for NCV.

Figure 2.6,Figure 2.7,Figure 2.8,Figure 2.9 and Figure 2.10 compare the accuracy and signif-
icance for MSR (first two columns) with those of NCV (following two columns), across all the
subjects in each dataset (rows), for results obtained using the GNB classifier. From the figures it’s
clear that, roughly, the results coming from the same voxel selection methods are significant or not
significant in both NCV and MSR.
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Figure 2.6: Comparison of significance of smoothed table max with nested CV, for all
subjects (rows) in dataset D1. The first column contains the accuracy results using the best
number of voxels selected with each of the 12 methods, and the second column contains
the significance of those results under the max row null model (red is significant, blue is
not). The third column contains the accuracy results using nested cross-validation to select
the number of voxels to use. The fourth column contains the significance of those results
under the appropriate null model in that case, coin toss.
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Figure 2.7: Same as Figure 2.6, for dataset D2
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Figure 2.8: Same as Figure 2.6, for dataset D3
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Figure 2.9: Same as Figure 2.6, for dataset D4
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Figure 2.10: Same as Figure 2.6, for dataset D5

2.3.4 Results across classifiers and significance

Section 2.3.3 showed us that what the “max row” null model deems significant lies between what
coin toss null model does (optimistic) and what a permutation test null model does (pessimistic).
In tandem with that, Section 2.3.3 shows that significance of the maximum accuracy of each voxel
selection method result table row under “max row” is quite close to the significance of the nested
cross-validation accuracy for each voxel selection method under its correct null model. Therefore,
it seems reasonable to use “max row” rather than coin toss (for reasons of principle) or the permu-
tation test (for reasons of cost), unless we are computing the significance of relatively few things,
in which case the latter should be preferred.

This allows us to answer the question of significance not just when we have one set of results
(one per voxel ranking method) but several for each subject (best using a number of voxels for
each ranking method and classifier). Additionally we can compare this with what would have been
declared significant under the “coin toss” null model.

Figure 2.11, Figure 2.12, Figure 2.13, Figure 2.14 and Figure 2.15 test the accuracy for MSR
(first column) according to the two null models (second and third column) across all the subjects
in each dataset (rows). The set of results for each subject is a matrix with as many rows as voxel
ranking methods and as many columns as classifiers. The classifiers being considered are, in order,
Gaussian Naive Bayes, Logistic Regression with L1 regularization, Logistic Regression with L2
regularization and a linear Support Vector Machine.
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Each null model is used to obtain p-values for the values being tested. These are then thresh-
olded with the p-values for all methods and subjects considered together while using a bonferroni
correction with significance level 0.01.

The top results are significant regardless of which null model is used and generally significant
across classifiers, but there are interesting differences for lower results which would usually have
been deemed above chance.
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Figure 2.11: Significance of the accuracy at the best number of voxels picked using each
method, for several classifiers (left column), using the coin toss (middle column) and max
row null (right column) models, for dataset D1 results (one subject per row). Significance
is denoted by red, no significance by blue.
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Figure 2.12: Same as Figure 2.11, for dataset D2.
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Figure 2.13: Same as Figure 2.11, for dataset D3.
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Figure 2.14: Same as Figure 2.11, for dataset D4.
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Figure 2.15: Same as Figure 2.11, for dataset D5.

2.3.5 Effects of classifier and voxel selection method choice

Given the multi-classifier results described in the previous section one can ask a different question,
namely how choices of classifier or voxel ranking method could be compared. The first question
one can ask is whether the choice for one of these factors has an effect across all possible choices
of the other. The second is whether their interaction matters and thus whether any combination of
choices is particularly better or worse than all others. The following two sections attempt to answer
these questions, across subjects and datasets.

Effect of either choice

Consider a set of variables E1, . . . , El, one per example being tested, taking the value 1 if the
lth example was classifier correctly and 0 if not. In Section 2.2.5, we discussed how this set of
variables can be viewed as a sample and how, if we want to compare the means of two such sets
created from the decisions of two classifiers on the same test examples, a paired t-test can be used.
Given that the mean of each sample is the classifier accuracy, this comparison of sample means is
an accuracy comparison.

This can be generalized to comparison of the decisons made by a particular classifier using
the voxels selected by a particular voxel selection method, across all possible choices of each; one
way to do to it is to treat the problem as a two factor ANOVA - classifier vs selection method -
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where the sample for each level of either factor - a choice for each thing - is the set of decision
variables above. Because all the samples were obtained on the same test examples, this has to be a
within-subjects two-factor ANOVA [44].

Figure 2.16, Figure 2.17, Figure 2.18, Figure 2.19 and Figure 2.20 show the maximum results
for the subject(s) in each dataset (similarly to the matrices in the previous section), and the results
of the ANOVA. For each subject, the title of the graph will contain row and/or col, depending
on whether there is a significant difference across rows (methods) or columns (classifiers). The
threshold for significance is obtained with a bonferroni correction to take into account the number
of subjects, for an overall level of 0.01.

In almost all subjects and datasets there is a significant effect of voxel ranking method (row), in
that the range methods (row 8-12) have worse scores than the others (with the exception of logistic
regression weights (row 5), in datasets D2,D4 and D5). It appears that searchlight accuracy is
almost always better than accuracy, but other contrasts are unclear.

Datasets D3, D4 and D5 (multiclass problems) have a significant effect of classifier choice
(row) for at least half the subjects, with GNB being worse in dataset D3, better in D4 and worse in
D5 (though the worse voxel ranking methods account for most of this).

Effect of their interaction

We also want to consider the interaction of the choice of voxel ranking method and classifier and
have an idea of how well each combination does relative to all the others. Consider the indicator
variables that say whether each example was labelled correctly (see Section 2.2.3) by a given
classifier trained on the features selected with a given method. We can do a paired t-test on that set
of indicators against the set of indicators produced by all other choices of method and classifier.
This produces a set of p-values and a set of mean differences between every pair of choices. The
set of p-values can then be thresholded using False Discovery Rate (given the large number of
tests being performed and correlated results) to decide on a threshold to give an adjusted rate of

0.01
#subjects .

While this can be used to list all the combinations of pairs of method/classifier that have a
significantly different accuracy (as done in [43] for the best scoring classifier versus others, for
instance), it does not provide an obvious summary. Our approach for addressing this problem is
the plot in Figure 2.21 (for dataset D4), which simultaneously plots the results of testing every
combination of classifier and voxel ranking method against any other.

The figure has as many rows as voxel ranking methods, and as many columns as classifiers.
Each cell i, j on that grid thus corresponds to a particular combination of voxel ranking method
and classifier, and contains the results of the tests of that combination against all others.

Given the level of detail in the graph, it’s better to consider a particular i, j more closely;
Figure 2.22 is a magnified version of the top-left corner of Figure 2.21, and we will look at one of
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Figure 2.16: ANOVA of best classification results for each combination of voxel selection
method (12 rows) and classifier (4 columns) on dataset D1, the four plots correspond to
four subjects. The colour in each cell corresponds to the maximum accuracy attained
by that combination (see scale). On the bottom and the right of each plot there is a dark
blue row/column (padding) after which comes an extra row/column containing the mean of
each column/row. The title of each subject plot contains the subject name and also encodes
whether there was a significant effect of voxel selection method, if the word “row” appears,
classifier, if the word “col” appears, or both.

58



FS
 m

et
ho

d

02452B (row/)

 

 

classifiers mean

1

2

3

4

5

6

7

8

9

10

11

12

mean
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
02497B (row/col)

 

 

classifiers mean

2

4

6

8

10

12

14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
02509B (row/)

 

 

classifiers mean

2

4

6

8

10

12

14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
02553B (row/col)

 

 

classifiers mean

2

4

6

8

10

12

14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
02607B (row/)

 

 

classifiers mean

2

4

6

8

10

12

14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
02714B (row/)

 

 

classifiers mean

2

4

6

8

10

12

14
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 2.17: Same as Figure 2.16, for dataset D2
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Figure 2.18: Same as Figure 2.16, for dataset D3
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Figure 2.19: Same as Figure 2.16, for dataset D4
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Figure 2.20: Same as Figure 2.16, for dataset D5

its plots, cell 1, 2 (first row, second column).

Cell 1, 2 is divided into column subplots, with the first one pertaining to the first subject, second
one to the second subject, etc. Each of those subplots is a miniature plot with entries correspond-
ing to the dimensions of Figure 2.22, with as many rows as voxel selection methods and as many
columns as classifiers, with cells indexed by k, l. It captures the significance of comparisons be-
tween the 1, 2 combination and all others, for that subject. In more detail, entry k, l in the subplot
for 1, 2 is 0 (light green) if the mean difference between the 1, 2 and k, l samples was not sig-
nificant, and has a positive (red) or negative value (blue) reflecting the sign and magnitude of a
significant difference.

In this particular example, dataset D4, it’s clear that for most subjects the range methods are
worse than almost all others, while among the other methods 2 (searchlight accuracy), 6 (ANOVA)
and 7 (replicability) work the best.

The same holds for dataset D5 and, to a lesser extent, for dataset D5. Similar plots for datasets
D3 and D5 are given in Figure 2.52 and Figure 2.53, in the appendix of this chapter. Very few
pairs are deemed significant in datasets D1 and D2, possibly because both are binary classification
problems and most choices achieve reasonably high accuracy, so those datasets are not shown.

Overall there seems to be little difference between classifiers, except for slightly worse results
with GNB.
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Figure 2.21: Significance of the difference between the accuracy of each combination of
voxel ranking method and classifier and all others, for dataset D4. Please see Section 2.3.5
for a detailed explanation and walkthrough.
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Figure 2.22: Magnified version of the upper left corner of Figure 2.21.

2.3.6 Effects of training dataset size

A natural question in face of the results in the previous sections is whether they would be very
different if datasets were smaller. In particular, would certain voxel ranking methods and classifiers
be more affected?

In order to examine this question we trained classifiers on a 2-fold cross-validation (even/odd
runs or epochs) and compared it with the original 6-fold/12-fold cross-validations; relative to this
the 2-fold situation has 40%− 50% smaller datasets. The results undergo the same smoothing and
maximum selection that the original results did.

Figure 2.23 depicts a comparison of these results for dataset D1. It has 4 columns, one per
subject, and three rows corresponding to the original results, the even-odd cross-validation results
and the change in accuracy. Each cell in the grid contains as many rows as voxel ranking methods
and columns as classifiers.

The measure of change of accuracy is original result−new result
original result Figure 2.24, Figure 2.25, Fig-

ure 2.26 and Figure 2.27 depict the same information for the other datasets.

Examining these, only binary classification datasets (D1,D2) seem to remain mostly unscathed
or even improve slightly. Performance can drop down 20% for many method/classifier combina-
tions in the multiple class datasets (D3,D4,D5). A likely reason for this is the gap in the number of
examples per class, which is 42 for D1 and 30 for D2 versus 6 for D3, 3 for D4 and 15 for D5; the
fewer the examples, the larger the drop in performance. Even in the face of this, the methods that
give the best results with the larger datasets also do so for the smaller ones.
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Figure 2.23: Top: accuracy across methods and classifiers for all subjects in dataset D1
(columns), using leave-one-out cross-validation. Middle: the same, using 2-fold cross-
validation. Bottom: fraction of change between 2-fold and leave-one-out, relative to
leave-one-out.
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Figure 2.24: Same as Figure 2.23, for dataset D2
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Figure 2.25: Same as Figure 2.23, for dataset D3
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Figure 2.26: Same as Figure 2.23, for dataset D4
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Figure 2.27: Same as Figure 2.23, for dataset D5

2.3.7 Issues with cross-validation and feature selection

Feature selection is done not only for the generic purpose of increasing accuracy but also for a
domain-specific reason: to test whether features selected according to a certain criterion (e.g. loca-
tion or feature behaviour) contain information that can drive a classifier (e.g. [26] and [35]). If this
is being done on a single training set and using only one method for selecting features, it’s easy to
identify the features and examine them for location or behaviour.

More typically, however, this is being done within a cross-validation, and a different set of
features can be picked in each fold. This would happen if redundant information is present, e.g.
think of a pool of voxels where all of them have similar response characteristics across classes. A
second issue is whether different feature selection methods draw from different pools or whether
they identify many of the same features. This section examines the former question by looking
at the extent to which selected features overlap across cross-validation folds. The latter question
is tackled by considering the overlap of feature sets selected by different methods. Note that this
is done in contrast with work such as in [41], where several univariate and multivariate methods
are shown to have large differences in the activity surfaces they construct. The more analogous
work would be to show different classifiers assigning weights to different voxels. Here we are
concerned merely with the voxel selection methods, both within a method and across folds and
between methods.
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Selected voxel overlap across cross-validation folds

In order to look at the extent to which selected voxels are the same across folds we computed the
fraction of overlap between the set of voxels picked on all folds and the set of voxels picked on any
fold.

In an ideal situation where voxels were always ranked in the same way by the same method in
all folds, this overlap fraction would be 1. In practice, we can expect a certain number of voxels
fulfilling the ranking criterion well and taking turns at being near the top in different folds. Hence
we expect the overlap fraction to start low as few voxels are selected (many possible voxels fit
the criterion used equally well, only a few are selected in each fold), rise to a peak as the number
selected increases (eventually most of the voxels that fit the criterion are in the top) and then lower
as random voxels get in.

Figure 2.28, Figure 2.29, Figure 2.30, Figure 2.31 and Figure 2.32 show this overlap for all
five datasets. Each figure has as many rows as subjects and two columns. The right column plots
contain the smoothed row accuracy at the best number of voxels selected with each method. Each
plot on the left column contains as many rows as voxel ranking methods. In each row each entry
corresponds to one of the numbers of voxels selected and contains the overlap fraction between the
sets selected in each fold. Following a row gives an idea of how the overlap fraction changes with
the number of voxels.

The figures suggest two factors at play across datasets. The first is that if examples come from
trials in an event-related design there is less overlap than if they are the average of images in a
block. The second is that having more examples also increases overlap, at least for the multiclass
problem datasets (D3,D4 and D5). The methods based on activity (3,4) are the only ones that
have a higher amount of overlap throughout studies, together with the range method that considers
maximum activity only. From this it seems reasonable to conclude that level of activation is a more
consistent property than those looked at by other methods, even if in the case of the maximum it
appears to select more noisy voxels (judging by the corresponding accuracy).

But is the fraction of overlap related to the accuracy in any way? Consider Figure 2.33, Fig-
ure 2.34, Figure 2.35, Figure 2.36 and Figure 2.37. In the figure for each dataset there are as many
plots as subjects. Each one plots the fraction of overlap in voxels selected across folds against the
corresponding accuracy at the best number of voxels, with each point corresponding to a particular
method. The figures indicate that increasing overlap fraction is not accompanied by increasing
accuracy and, furthermore, suggest no clear relationship.

70



01481B

FS
 m

et
ho

d

overlap fraction

 

 

10 20 40 80 150 300 600 90012001800 best

2

4

6

8

10

12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

01481B

Accuracy (best #)

 

 
2
4
6
8

10
12 0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

01482B

FS
 m

et
ho

d

 

 

10 20 40 80 150 300 600 90012001800 best

2

4

6

8

10

12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

01482B
 

 
2
4
6
8

10
12 0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

01897B

FS
 m

et
ho

d

 

 

10 20 40 80 150 300 600 90012001800 best

2

4

6

8

10

12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

01897B
 

 
2
4
6
8

10
12 0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 2.28: Fraction of overlap ([0,1]) between the set of voxels picked in all crossvali-
dation folds and those picked in at least one fold, for dataset D1 (6 fold cross-validation).
The figure contains two columns of plots, one row per subject. Each plot on the left col-
umn contains as many rows as voxel ranking methods. In each row each entry corresponds
to one of the numbers of voxels selected and contains the overlap fraction between the sets
selected in each fold, as defined in the main text. As the numbers end there is some padding
and one final column on the right with the overlap fraction at the best number of voxels
selected with each method. The right column plots contain the smoothed row accuracy
using the same number of voxels.
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Figure 2.29: Same as Figure 2.28, for dataset D2 (6 fold cross-validation).
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Figure 2.30: Same as Figure 2.28, for dataset D3 (12 fold cross-validation).
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Figure 2.31: Same as Figure 2.28, for dataset D4 (6 fold cross-validation).
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Figure 2.32: Same as Figure 2.28, for dataset D5 (6 fold cross-validation).
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Figure 2.33: Relationship between overlap fraction (x axis, [0 1]) and classifier accuracy
.
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Figure 2.34: Same as Figure 2.33, for dataset D2.
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Figure 2.35: Same as Figure 2.33, for dataset D3.
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Figure 2.36: Same as Figure 2.33, for dataset D4.
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Figure 2.37: Same as Figure 2.33, for dataset D5.

Cross-method selection overlap

In order to quantify the extent to which different methods use the same voxels, we measure the
fraction of overlap between the set of voxels selected on any fold by each method with the set
selected by any other method. Figure 2.40 shows this for dataset D3. There are 4 columns, one
per subject. The first row contains overlap matrices, where entry i, j corresponds to the fraction
of overlap # voxels selected in any fold by both methods

# voxels selected in any fold by either method , with each method selecting the number of
voxels at whatever accuracy was best for it.

Given that this could mean the overlap fraction would be low if either method was best using
few voxels, the second row of plots contains montages of overlap fraction matrices using fixed
number of voxels, for all numbers of voxels tried, as those numbers increase vertically. From this
one can see that overlap does increase with numbers, but rarely to more than 50 − 60%. The
same happens for the remaining datasets as shown in Figure 2.38, Figure 2.39, Figure 2.41 and
Figure 2.42

There are a few interesting patterns that hold across datasets. The first is in the activity meth-
ods (3,4): one will be more appropriate than the other to each dataset, depending on preprocessing,
but they both rank many of the same voxels highly. The second is that the two accuracy methods,
voxelwise and searchlight (1,2), pick relatively different voxels (prior evidence for this was found
in [58]). Given that the latter almost always leads to worse classification results, it appears that they
both pick very informative voxels early on but the latter can be led astray (even with many exam-
ples, as in dataset D5). Voxelwise accuracy (3) also shows some overlap with ANOVA (6), which
makes sense given that they make the same assumptions about class voxel activity distribution; as
the number of voxels increases its overlap with the range methods also increases (these are voxels
selected by differences in mean activity in each class, but not taking the variance into account, so
possibly merely very noisy). ANOVA (6) and replicability (7) have a lot of overlap, surprisingly
given that the criteria they use are unrelated, at least at first glance. One possible reason for this
would be because the latter will prefer voxels that are both consistent in their activity across classes
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(and thus have low variance) but also have some activation driving the correlation values between
runs (and thus mean differences between classes). Not surprisingly, the range methods (8-11, 12
is simply picking voxels by their maximum activity) tend to display a lot of overlap among them-
selves and not with all the other methods (notice the square block structure in the lower right of
each graph). In datasets with binary classification problems (D1,D2) they all pick precisely the
same voxels. Logistic regression weights (5) overlaps with the range methods (8-11), perhaps
because voxels that help discriminate and get a large range of logistic regression weights across
classes should also have a large range of mean activities across classes, which would lead to high
scores in most range methods. The only range method with a somewhat different profile is “max”
(12), which overlaps to a certain extent with the activity methods (3,4). Again, it’s not surprising
that voxels that score high in the activity criterion would also score high here. Given the bad results
obtained with the method, it most likely picks many very noisy voxels in addition.
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Figure 2.38: Top: fraction of overlap [0 1] between the set of features picked in all cross-
validation folds by each pair of methods, using the best number of features for each, for
dataset D1. Bottom: Same, forcing both methods to use the same number of features,
repeated several times vertically as the number of features increases.
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Figure 2.39: Same as Figure 2.38, for dataset D2.
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Figure 2.40: Same as Figure 2.38, for dataset D3.
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Figure 2.41: Same as Figure 2.38, for dataset D4.
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Figure 2.42: Same as Figure 2.38, for dataset D5.

Overlap in classification decisisons of the sets of voxels picked by two different voxel
selection methods

In the previous section we considered looking at the overlap of the sets of voxels selected by two
given methods. To some degree this tells us whether they use the same voxels, but not necessarily
whether the information each set provides to the classifier is the same.

Given any two methods and a fixed classifier, we can address this question by considering
which examples the classifier mislabelled when trained on the set of voxels picked with each
method, with the number of voxels yielding the best result. If the classifier makes precisely the
same mistakes, it’s likely that it’s learning a similar model and thus the information it has in each
case is similar. The fraction of overlap between the sets of mistakes (number of examples on
which both classifiers were wrong relative to the total number of examples mislabelelled by either
classifier) is plotted for four subjects on dataset D3 on the first row of Figure 2.45.

Note that one danger of this approach is that the more accurate either of the classifier+method
is the less room there is for overlap in mistakes; hence the results should be skewed towards either
no overlap or almost complete overlap (if the methods happen to select voxels with similar infor-
mation). In order to help gauge the effect of this, the accuracy of the classifier using the voxels
selected with each of the methods is plotted on the second row.

The only overlap pattern that seems to be present in all datasets is that the two activity meth-
ods (3,4) overlap to a large extent in the mistakes they make. In the multiclass problem datasets
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Figure 2.43: Top: Fraction of overlap [0 1] between sets of mislabelled examples of a
classifier trained with features selected by any two methods, at the best accuracy for either,
for dataset D1. Bottom: Accuracy of the classifier trained using the features selected by
each method, at the best accuracy, for dataset D1.

(D3,D4,D5), ANOVA (6) and replicability (7) overlap very much, whereas voxelwise accuracy (1)
and searchlight (2) overlap less (at the lowest levels in the graph). In dataset D4, ANOVA (6) and
replicability (7) overlap very little with any of the others, as does searchlight (2). In the two class
problem datasets (D1,D2) there are no clear patterns holding across all subjects.

In conclusion, there seems to be evidence that, at least for the multiclass problem datasets,
there are groups of voxels with different kinds of information. This means that it should be feasible
to combine groups to improve accuracy, and profitable to examine the behaviour of the voxels
involved.
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Figure 2.44: Same as Figure 2.43, for dataset D2.
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Figure 2.45: Same as Figure 2.43, for dataset D3.
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Figure 2.46: Same as Figure 2.43, for dataset D4.
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Figure 2.47: Same as Figure 2.43, for dataset D5.

2.4 An application: identifying informative locations and
characterizing voxel activity in them

2.4.1 Producing information maps

The previous sections were concerned with how classification results are obtained, deemed signif-
icant and compared. In this section we try to approach the same results from a different angle, that
of showing which scientifically relevant conclusions can be drawn from them (mostly derived from
[58] and a manuscript in preparation).

The dataset of concern is D1 from Section 2.3.1, where the subject sees word stimuli that name
items that are either tools or buildings. It has been established that machine learning classifiers
can be used to decode the semantic category of picture stimuli from the average of tens of images
acquired while the stimuli were being displayed to a subject (e.g. [24]). To our knowledge, no one
had shown it is possible to do so for word stimuli from images acquired during a short time interval,
as the task is made harder by the type of stimulus and the amount of noise due to only considering a
4 second period when averaging images. This led to our first goal: to show that enough information
was present in that short a period, even when elicited by word stimuli.

Our second goal was to try to show where the information used by the classifier was present. Of
all the voxel scoring methods outlined in Section 2.1.4, the most relevant ones for that purpose are
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subject method number of voxels selected max #
10 20 40 80 150 300 600 900 1200 1800 all acc. sign.

01481B single voxel 0.77 0.83 0.81 0.81 0.80 0.79 0.73 0.73 0.74 0.71 0.65 0.83 1
searchlight 0.81 0.80 0.80 0.82 0.83 0.82 0.80 0.79 0.75 0.75 0.65 0.83 317

01482B single voxel 0.69 0.76 0.74 0.76 0.79 0.77 0.77 0.76 0.74 0.71 0.63 0.79 0
searchlight 0.77 0.71 0.80 0.79 0.79 0.79 0.77 0.75 0.76 0.74 0.63 0.80 180

01897B single voxel 0.75 0.81 0.80 0.81 0.81 0.81 0.79 0.77 0.76 0.75 0.69 0.81 3
searchlight 0.69 0.74 0.77 0.77 0.81 0.81 0.81 0.81 0.82 0.82 0.69 0.82 449

Table 2.14: Classification results of GNB using the top n voxels ranked either by single
voxel or by voxel searchlight accuracy. The final column - “number significant” - indicates
how many voxels at the top of each rank have an accuracy score deemed significant.

(single voxel) accuracy and searchlight accuracy, in that they directly score voxels by whether they
contain information allowing an accurate prediction. As a reminder the single voxel accuracy is
simply the accuracy of a single-feature GNB classifier based on the voxel, obtained through cross-
validation within the training set. Searchlight accuracy is the accuracy of a GNB classifier trained
on the voxel and all the voxels adjacent to it in three dimensions, again through cross-validation
within the training set. This translates into a classifier using between 1 and 27 (a 3 × 3 × 3 cube)
features, depending on how many neighbours the voxel has. Since the classifiers we consider
are linear and add up information voxel by voxel (Section 2.1.2), the image obtained plotting the
accuracy of each voxel gives us a rough approximation of how much information each voxel can
contribute to the overall classifier, and that’s what we consider in the next section.

All the results reported were obtained using the GNB classifier, as in this dataset the choice of
classifier does not appear to affect the results very much.

2.4.2 Information map results

Table 2.14 shows the classification results obtained in 3 subjects, selecting various numbers of
voxels using either single voxel or searchlight accuracy. The best results obtained with either
method are similar and indicate that we can indeed decode the stimulus from the examples obtained
during short time intervals.

For our second goal, let’s consider images where each voxel contains either its single voxel
accuracy or its searchlight accuracy. As explained in Section 2.2.1, the single voxel and searchlight
accuracy scores can be converted into p-values in order to perform tests of statistical significance.
More precisely, if we have n test examples we can find the p-value of the accuracy score under the
null hypothesis that the true accuracy is chance level. Under the null hypothesis, the accuracy has a
binomial distribution with parameters n and p = 0.5; the p-value we use is the probability that the
accuracy under that distribution would be equal to or greater than the accuracy score obtained. This
yields one p-value per voxel and thus a p-value image. This p-value image can then be thresholded
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Figure 2.48: Searchlight accuracy for voxels that have significant p-values, in subject
01481B. The scale ranges from≈ 70%(blue) to≈ 80%(bright red). The slices are arrayed
from inferior (top) to superior (bottom), and each slice is displayed with posterior at the
top and anterior at the bottom.

in a way that accounts for multiple tests - as many tests as there are voxels - using a false discovery
rate (FDR) procedure [67] with a 0.01 level. Note that the FDR procedure takes into account the
fact that the scores of different voxels,and thus their p-values, can be correlated, a factor that is
more acute in the searchlight case.

The last column of the table shows the number of voxels that are deemed significant under this
procedure, for the single voxel and searchlight images of each subject. The searchlight p-value
images contained hundreds of significant voxels, while the single voxel p-value images contained
almost none. This indicates that some voxels, together with their neighbors, can form a group
where the majority decides more accurately than any individual. This may happen because the
noise in different voxels is uncorrelated at least to some extent, whereas informativeness in voxels
will, this being a two class problem, manifest similarly in all of them as separation between the
means of the distributions of values of each class.

Figure 2.48, Figure 2.49 and Figure 2.50 show the voxels whose searchlight accuracies were
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Figure 2.49: Searchlight accuracy for voxels that have significant p-values, in subject
01482B. The scale ranges from≈ 70%(blue) to≈ 80%(bright red). The slices are arrayed
from inferior (top) to superior (bottom), and each slice is displayed with posterior at the
top and anterior at the bottom.
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Figure 2.50: Searchlight accuracy for voxels that have significant p-values, in subject
01897B. The scale ranges from≈ 70%(blue) to≈ 80%(bright red). The slices are arrayed
from inferior (top) to superior (bottom), and each slice is displayed with posterior at the
top and anterior at the bottom.
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deemed significant for three subjects. The accuracy of voxels in the image is in the range of
≈ 70%(blue) to ≈ 80%(red). There was particularly high accuracy in at least two locations of
interest common to all subjects: voxels around the central sulcus and in the parahippocampal gyrus.
These locations are consistent with the categories used as well as the instructions (visualizing
oneself in the building or oneself using a tool) and previous reports of activation or decoding from
picture stimuli of those categories (e.g. [26] or [35]). The former is reasonable given that motor
cortex is on one of the sides of the central sulcus and thus likely to appear in voxels around that area
if thinking of tools activates motor cortex; the latter because activation in the area has been linked
to landmark/location/building stimuli. Intriguingly, other common high accuracy areas include the
left inferior frontal gyrus and middle/superior temporal areas. These were not expected and might
point at a different use of language when performing the task with each category and will thus be
examined in more detail in future studies.

2.4.3 Characterization of informative voxel activity

By reducing dimensionality to the point where good classification is possible, voxel selection pro-
duces a dataset where one can expect voxel behaviours related to task labels to be represented.
While on a binary classification problem the sole informative behaviour might be having bimodal
activation where the modes correspond to the two classes, multiple class problems have room for
more variety, as we shall see below.

We will use Dataset D3 introduced earlier, an 8 category problem where stimuli belong to
one of 8 categories: faces, houses, cats, bottles, scissors, shoes, chairs and scrambled pictures. In
Section 2.3.2 we saw that it was possible to obtain fairly high accuracy (80%−90%) using various
methods in two of the subjects. We will look at the first subject, considering the top 100 voxels as
selected by ANOVA.

Figure 2.51 shows the value of each of 100 selected voxels in the average example in each of
8 classes. The voxels are ordered so that voxels with similar average levels of activation across
classes are clustered together (using spectral clustering [54] with euclidean distance). They divide
clearly into three groups, one that is active primarily for Face/Cat stimuli (the latter stimuli con-
tain only cat heads), another for Houses and another mainly for the four categories of man-made
objects. Note that, whereas the first two display a very selective behaviour (on for one kind of
thing, off otherwise), the group active for the objects displays a a more heterogeneous pattern of
activation, with subgroups active for various pairs of classes and also what might be various levels
of activation. A fourth group intriguingly combines houses with some of the objects, something
that we do not have a good explanation for.

It’s unlikely that we would have been able to identify these classes of behaviour directly from
the data containing all the voxels, be it because of the sheer number of voxels to consider in cluster-
ing or because of the many possible voxel behaviours that, despite high levels of activation, might
not be structured in anyway reflecting the class structure. Using voxel selection and looking at the
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Figure 2.51: Clustering of voxel activity across 8 categories, shows the value of each 100
selected voxels in the average example for each category. The voxels are ordered so that
the voxels with similar average levels of activation are grouped together.
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few voxels that contain the information is thus a good way of obtaining behaviour “representatives”,
which can be examined to test existing hypotheses of how the classes and their relationships are
neurally encoded or suggest new ones. It’s interesting to note that a different method for voxel se-
lection might yield different representatives, and we are currently investigating the extent to which
this happens.
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Figure 2.52: Same as Figure 2.21, for dataset D3
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Figure 2.53: Same as Figure 2.21, for dataset D5
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Chapter 3

The Support Vector Decomposition
Machine

Linear dimensionality reduction in machine learning is generally performed for two purposes. The
first is to make the data more interpretable by decomposing each example as weighted linear com-
bination of a few basis vectors with the same dimensionality (e.g. in fMRI data each example is
an image and each basis vector what is called an eigenimage). The vector of weights then be-
comes a low-dimensional representation of the high-dimensional example. The interpretability is
tied to the criterion the dimensionality reduction method uses for finding a basis, e.g. basis vec-
tors in the directions of maximum variance (in Singular Value Decomposition) or which are close
to independent (in Independent Component Analysis). Knowing the criterion used and using ad-
ditional domain information (e.g. anatomical locations in an eigenimage) allows one to interpret
basis vectors and, through knowing which of those weigh most heavily in the decomposition of
each example, the original data.

The second purpose is to help in training a classifier to predict a variable of interest from the
data, by maintaining the same number of examples while reducing the number of features given to
that classifier. However, SVD and ICA do not consider classification performance but rather how
well the original data can be reconstructed from the basis and the low-dimensional representation;
there is no guarantee that a classifier based on reduced dimensionality data produced by these
algorithms will work well.

In this chapter we introduce two variations of the Support Vector Decomposition Machine
(SVDM), a new algorithm that simultaneously solves the problem of linear dimensionality re-
duction and classification, outputting a solution with three components: a set of basis vectors, a
low-dimensional representation of the examples and a linear classifier based on that representa-
tion. Furthermore, we demonstrate on two fMRI datasets that better classification results can be
achieved than those obtained by doing SVD or ICA first and then training linear SVM or a Naive
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Bayes classifiers. The low-dimensional decomposition learnt is also good for reconstruction, as
well as reusable with classifiers other than the one learnt by the algorithm; most dimensions show
class-related structure.

3.0.4 Singular Value Decomposition

The goal of the singular value decomposition algorithm is to find a representation of a matrix of
training data as a product of lower-rank matrices. The dataset matrix contains n examples (rows)
withm features (columns).

Xn×m =





x1(1) x1(2) . . . x1(m)
x2(1) x2(2) . . . x2(m)
. . .

xn(1) x2(2) . . . xn(m)



 =





x′
1

x′
2

. . .
x′

n





The SVD approximates X as a product of two1 lower-rank matrices,

Xn×m ≈ Zn×lWl×m

Here l is the rank of the approximation. W is a basis matrix: each of its l rows is a direction of
variability of the training examples. And Z is a matrix of coordinates: the ith row of Z gives the
coefficients necessary to reconstruct the ith training example as a linear combination of the rows
ofW .

More precisely, the SVD minimizes the sum of squared approximation errors: we can compute
Z andW by solving the optimization problem

min
Z,W

‖X − ZW‖2
Fro (3.1)

Here ‖A‖Fro stands for the Frobenius norm of the matrix A,
√∑

ij A2
ij .

3.0.5 Classification

We will suppose that there are k ≥ 1 classification problems which we wish to solve. The target
labels for these problems are given in the matrix Yn×k, with yi,j ∈ {−1, 1}. The reason for
allowing k classification problems instead of just one is that one problem may give information
about features which are useful for solving another. This is a form of Multitask Learning [7] and
experiments exploring it are detailed in Section 4.2 of Chapter 4.

1Often the SVD is written as a product of 3 matrices, X = UΣV ′, and constraints such as U ′U = I
and V ′V = I are imposed on U , Σ, and V to make the solution unique. We could just as easily write it as
X = ZW where Z = UΣ andW = V ′.
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To solve these classification problems using the learned low-dimensional representation from
the SVD, we can seek parameters Θl×k such that the matrix sgn(ZΘ) is a good approximation to
Y . Here sgn(·) is the componentwise sign function, so for example if some element of Y is 1 we
want the corresponding element of ZΘ to be positive. For convenience, we will constrain all the
entries in the first column of Z to be 1, so that the corresponding entries in the first row of Θ will
act as biases for the k classification problems.

As discussed above, the SVD computes Z andW without reference to Y or Θ. To improve on
the SVD we will simultaneously search for values of Z, W , and Θ to minimize an objective com-
bining reconstruction error and classification performance. To this effect we propose two different
approaches that each rely on solving a particular optimization problem.

3.0.6 Chapter contents

As discussed above, the SVD computesZ andW without reference to Y orΘ. Section 3.1 and Sec-
tion 3.2 introduce two algorithms that simultaneously search for values of Z,W , and Θ. Both can
be viewed as solving an optimization problem that trades off reconstruction error of the example
matrix X with a measure of classification performance.

The first algorithm - A - does this directly by having an objective which trades off the recon-
struction error over all examples, ‖X − ZW‖2

Fro =
∑

i,j(xij − zi,:w:,j)2 (the Frobenius norm of
the error matrix, where zi,: is the ith row of Z andw:,j is the jth column ofW ), with the total hinge
loss of classification decisions based on the low-dimensional representation of examples, Z (this is
an upper bound on training set classification error). As there are many Z/W pairs that would yield
the same reconstruction error, the algorithm also requires constraints that will pick one particular
solution.

The second algorithm – B – also has an objective based on feature reconstruction error and
hinge loss over all examples. In contrast with algorithm A, it directly minimizes the norms of Z
and Θ in the objective. This leads to optimization problems that are either the usual linear SVM
problem or a very similar modification, as they will not require the constraints in algorithm A.

After Z,W and Θ are identified with either algorithm, we have a model that allows us to take
a test dataset, project it to a low dimensional subspace where its coordinates are Z and the basis
W ; Z can then be used, together with Θ, to generate predicted labels. It’s also possible to generate
predicted labels from the test dataset itself, by using a discriminant in the original feature space
that makes the same predictions as Θ would make given Z. Section 3.3 details how one can obtain
such an equivalent feature-space discriminant.

Finally, Section 3.5.6 considers the question of constraining how many dimensions of the low-
dimensional space can be used to influence the learnt Θ while using the remaining ones strictly for
reconstruction.
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3.1 SVDM Algorithm A

3.1.1 Optimization Problem A

As discussed in a previous section, the SVD computes Z and W without reference to Y or Θ. To
improve on the SVD we will simultaneously search for values of Z,W , andΘ which minimize the
following objective:

‖X − ZW‖Fro +
∑

i=1:n,j=1:k

h(ρij , µ, D)

where ρij = yijZi,:Θ:,j . Again, the summation on i is over the n examples and the summation
on j is over k binary classification problems (for all of this chapter k = 1, the case of k > 1 is
discussed in the next chapter). Here h is the hinge loss function with slope −d and breakpoint µ:

h(ρ, µ, d) =

{
0 ρ ≥ µ

d(µ − ρ) otherwise

This objective trades off reconstruction error (the first term) with a bound on classification error
(the second term). The parameter d controls the weight of the hinge loss term, and the parameter µ
controls the target classification margin.

The relative norms of Z,W , and Θ are not constrained by the above objective; for example, if
we multiply Θ by some constant λ, we can compensate by dividing Z by λ and multiplyingW by
λ. So, we will impose the arbitrary constraints

Zi,1 = 1

‖Zi,2:end‖2 ≤ 1

‖Θ:,j‖2 ≤ 1

(3.2)

to pick one solution out of the many possible ones. We have constrained Zi,1 to be 1 for two
different reasons: the first is to make Θ1,j be a bias term for the jth linear discriminant, and the
second is to make the first row ofW correspond to the mean of the dataset.

The SVDM optimization problem is strongly related to both the SVD and the SVM. To gain
an intuition, we can examine what happens when we set d to its extreme values. As d rises the
objective will be dominated by the hinge loss term. Thus, the problems of finding Z and Θ will be
similar to linear SVM problems. On the other hand, if we set d to 0, the hinge term vanishes, leaving
only the Frobenius norm term. The resulting optimization is identical to the SVD problem (3.1),
save for the constraints (3.2). The only one of these constraints that makes a difference is Zi,1 = 1;
its effect is equivalent to centering the data by subtracting its mean before performing the SVD.
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3.1.2 Solving Optimization Problem A

We can solve the SVDM optimization problem by iterating the following steps: minimize the ob-
jective with respect to the variablesW while holding Z and Θ fixed, then minimize with respect to
Θ with Z andW fixed, then finally minimize with respect to Z withW and Θ fixed. Holding two
of the three matrices fixed at each step of the optimization procedure simplifies the optimization
problem in different ways, described in the following subsections. The most important detail is
that each of those subproblems is convex ([4]) and thus has a single minimum. Given this, each
step reduces the overall objective value, and because the objective is positive, this alternating min-
imization procedure will cause the objective value to converge to a local minimum or saddle point;
we stop the optimization after an iteration - a set of three minimizations, one each with respect
to W , Z and Θ yielded less a 0.5% decrease in the objective. For the experiments described in
Section 3.5.2, this translated into between 1 and 20 iterations.

Given Θ and Z, solve forW

As there is only one term involvingW , we want to minimize

‖X − ZW‖Fro

with no additional constraints. That is, we wish to predict X as a linear function of Z using
coefficients W , minimizing the sum of squared prediction errors. We can find the best W by
solving a linear regression problem for each column ofX:

X:,j ≈ ZW:,j

For stability we add a tiny ridge term to each regression [25].

It is relatively simple to add external constraints on the rows of W , such as sparsity or spatial
smoothness, without affecting the other subproblems; this is discussed at length in Section 4.1 of
Chapter 4.

GivenW and Z, solve for Θ

Since W and Z are fixed, we can drop the first part of the objective as well as the constraints that
don’t involve Θ. The rest of the problem is then

minΘ,ρij

∑
ij h(ρij , µ, C)

subject to ρij = yijZi,:Θ:,j i = 1 . . . n, j = 1 . . . k

‖Θ:,j‖2 ≤ 1 j = 1 . . . k

103



This optimization problem tells us to chooseΘ so that sgn(Zi,:Θ:,j) is a good predictor of Yij ; that
is, it is a linear threshold classification problem. We can divide the optimization into k independent
subproblems, each of which tries to find weights θ = Θ:,j which predict the jth column of Y from
the features Z:

minθ,ρi

∑
i h(ρi, µ, C)

subject to ρi = yijZi,:θ i = 1 . . . n

‖θ‖2 ≤ 1

Since the hinge loss h is piecewise linear and convex, we can replace each term h(ρi, µ, C) in the
objective by a variable hi and the additional constraints

hi ≥ 0
hi ≥ d(µ − ρi)

and hence the final problem is

minθ,ρi,hi

∑
i hi

subject to ρi = yijZi,:θ i = 1 . . . n

hi ≥ 0 i = 1 . . . n

hi ≥ d(µ − ρi) i = 1 . . . n

‖θ‖2 ≤ 1

This problem is similar to a standard SVM optimization, but not identical: it has a constraint
‖θ‖ ≤ 1 instead of a penalty proportional to ‖θ‖2

2.

Given Y and Θ, solve for Z

Z is the hardest variable to minimize over, since it appears in both terms of the objective. We can
divide the optimization for Z into n subproblems, one per example (row of Z). The ith subproblem
is to predict the ith row of Y using the ith row of Z as adjustable weights:

Yi,: ≈ sgn(Zi,:Θ)

The Frobenius norm term in the objective is quadratic in Z; if it were just ‖Z‖2
Fro we would have

essentially a standard SVM again, but instead we have shifted and scaled the quadratic so that it is
more expensive to increase Z along a direction that hurts reconstruction accuracy.

As in Section 3.1.2 we can eliminate h(ρij , µ, C) from the objective by adding variables hj

with appropriate constraints. With this replacement, the ith problem is to find the row vector Zi,:

which solves
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minζ,ρj ,hj ‖Xi,: − Zi,:W‖2
Fro +

∑
j hj

subject to ρj = yijZi,:Θ:,j j = 1 . . . k

hj ≥ 0 j = 1 . . . k

hj ≥ d(µ − ρj) j = 1 . . . k

Zi,1 = 1

‖Zi,2:end‖2 ≤ 1

Note that Zi,: affects only the ith row of X, which is approximated as a linear combination of
the rows of W where the weights are the entries of Zi,:. Furthermore, ‖Zi,2:end‖2 ≤ 1 is used to
force the algorithm to settle for one of many possible Z/W pairs, namely one where most of the
magnitude of the signal is placed in theW matrix and puts it roughly on the same scale asX .

3.2 SVDM Algorithm B

We developed a different algorithm for learning a SVDM with the goals of simplifying the opti-
mization subproblems and having their objectives be more similar to a traditional SVM. Given a
new objective, the algorithm has the same three alternating minimization steps as algorithm A.

3.2.1 Optimization Problem B

As discussed earlier, the SVD computes Z and W without reference to Y or Θ. To improve on
the SVD we will simultaneously search for values of Z, W , and Θ which minimize the following
objective:

1
kX

‖X − ZW‖2
Fro +

1
kH

∑

i=1:n,j=1:k

h(ρij) + d(
1
kZ

‖Z‖2
Fro +

1
kΘ

‖Θ‖2
Fro)

where ρij = yijZi,:Θ:,j . Here h is the usual hinge loss function

h(ρ) =

{
0 ρ ≥ 1
1 − ρ otherwise

This objective trades off reconstruction error (the first term) and a bound on classification error
via a hinge loss function (the second term) with the squared Frobenius norms of two matrices,
via the parameter d. This is done with a dual purpose. On one hand, the matrix Frobenius norms
become the 2-norms of the columns ofΘ and rows ofZ in the respective optimization subproblems;
minimizing them will correspond to maximizing margin width in the classification task. A second
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reason for having ‖Z‖2
Fro is to pick one of the several pairs of Z and W matrices that would

reconstruct X equally well, i.e. the one whose Z has the smallest Frobenius norm.

Note that we use a standard hinge loss, as empirically we’ve found there was little point to
having the µ parameter (changes the slope of the hinge loss) in the presence of the d parameter also
allowing an increase in the weight of the hinge loss.

The constants kX ,kH , kZ and kΘ compensate for the size of the matrices in each of the terms
in the objective by making the term be the average value in the matrix. Thus we have kX =
n × m,kH = n × k, kZ = n × l and kΘ = l × k.

We impose the constraint Zi,1 = 1 for two different reasons: the first is to make Θ1,j be a bias
term for the jth linear discriminant, and the second is to make the first row of W correspond to
the mean of the dataset. Given that, it will be useful to introduce the following matrices. Let X̄ be
such that each row i is X̄i,: = Xi,: − W1,:, W̄ = W2:end,:, Z̄ = Z:,2:end and Θ̄ =Θ 2:end,:. Then
our objective becomes

1
kX

‖X̄ − Z̄W̄‖2
Fro +

1
kH

∑

i=1:n,j=1:k

h(ρij) + d(
1
kZ

‖Z̄‖2
Fro +

1
kΘ

‖Θ̄‖2
Fro)

where ρij = yij(Zi,:Θ:,j) = yij(Z̄i,:Θ̄:,j + Θ1,j).

3.2.2 Solving Optimization Problem B

We solve problem B in the same way that we solve problem A, by iterating the following steps:
minimize the objective with respect to the variableW while holding Z and Θ fixed, then minimize
with respect toΘwith Z andW fixed, then finally minimize with respect to Z withW andΘ fixed.

Given Θ and Z, solve forW

As there is only one term involvingW , we want to minimize

‖X̄ − Z̄W̄‖2
Fro

with no additional constraints. That is, we wish to predict X̄ as a linear function of Z̄ using
coefficients W̄ , minimizing the sum of squared prediction errors. We can find the best W̄ by
solving a linear regression problem for each column of X̄:

X̄:,j ≈ Z̄W̄:,j

For stability we add a tiny ridge term to each regression [25].
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GivenW and Z, solve for Θ

Since W and Z are fixed, we can drop the first part of the objective as well as the constraints that
don’t involve Θ. The rest of the problem is then

minΘ,ρij
1

kH

∑
i=1:n,j=1:k h(ρij) + d 1

kΘ
‖Θ̄‖2

Fro

subject to ρij = yij(Z̄i,:Θ̄:,j + Θ1,j) i = 1 . . . n, j = 1 . . . k

This optimization problem tells us to chooseΘ so that sgn(Zi,:Θ:,j) is a good predictor of Yij ; that
is, it is a linear threshold classification problem. We can divide the optimization into k subproblems,
each of which tries to find weights θ = Θ̄:,j and θ0 = Θ1,j which predict the jth column of Y from
the features Z:

minθ,θ0,ρi

∑
i=1:n h(ρi) + dkH

kΘ
‖θ‖2

2

subject to ρi = yij(Z̄i,:θ + θ0) i = 1 . . . n

This problem is a standard linear SVM optimization.

Given Y and Θ, solve for Z

Z is the hardest variable to minimize over, since it appears in three of the four terms of the original
objective, yielding

minZ,ρij
1

kX
‖X̄ − Z̄W̄‖2

Fro + 1
kH

∑
i=1:n,j=1:k h(ρij) + d 1

kZ
‖Z̄‖2

Fro

subject to ρij = yij(Z̄i,:Θ̄:,j + Θ1,j), i = 1 . . . n, j = 1 . . . k

We can divide the optimization for Z into n subproblems, one per example. The ith subproblem is
to predict the ith row of Y using the ith row of Z as adjustable weights:

Yi,: ≈ sgn(Zi,:Θ)

and thus, letting ζ = Z̄i,::

minζ,ρj ‖X̄i,: − ζW̄‖2
2 + kX

kH

∑
j=1:k h(ρj) + dkX

kZ
‖ζ‖2

2

subject to ρj = yij(ζΘ̄:,j + Θi,j) j = 1 . . . k

This problem can be solved directly using an optimization package or converted into one similar
to the linear SVM optimization problem, in the manner we proceed to describe. The first and third
terms of the objective can be transformed into a single norm minimization term through variable
substitution (letting the variable be ζ = Z̄i,: and c = dkX

kZ
), as follows:
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‖X̄i,: − ζW̄‖2
2 + c‖ζ‖2

2 = X̄i,:X̄
′
i,: − 2ζW̄ X̄ ′

i,: + ζW̄W̄ ′ζ ′ + cζζ ′

(drop X̄i,:X̄ ′
i,:, as ζ does not appear)

= −2ζW̄ X̄ ′
i,: + ζW̄W̄ ′ζ ′ + cζIζ ′

= −2ζW̄ X̄ ′
i,: + ζ(W̄W̄ ′ + cI)ζ ′

(Cholesky factorization R′R = W̄W̄ ′ + cI)
= −2ζW̄ X̄ ′

i,: + ζR′Rζ ′

(make the substitutions p′ = ζR′, ζ = p′(R−1)′)
= −2p′(R−1)′W̄ X̄ ′

i,: + p′p

(close to a quadratic form, minus constants)
= (p − (X̄ ′

i,:W̄
′R−1)′)′(p − (X̄ ′

i,:W̄
′R−1)′) − constant

(subst. q = p − (X̄ ′
i,:W̄

′R−1)′)
= q′q (same minimum as the starting problem)

whereR is a l×lmatrix and p and q are 1×l vectors. The substitutions p′ = ζR′, ζ = p′(R−1)′,
q = p − (X̄ ′

i,:W̄
′R−1)′ and p = q + (X̄ ′

i,:W̄
′R−1)′ can then be used on the second term of the

objective, the hinge loss for each example/classification problem:

h(ρij) = h(yijZi,:Θ:,j)
= h(yij(ζΘ2:end,j + Θ1,j))

(subst. ζ = p′(R−1)′)
= h(yij(p′(R−1)′Θ2:end,j + Θ1,j))

(subst. p = q + (X̄ ′
i,:W̄

′R−1)′)
= h(yij((q + (X̄ ′

i,:W̄
′R−1)′)′(R−1)′Θ2:end,j + Θ1,j))

= h(yij(q′ + (X̄ ′
i,:W̄

′R−1))(R−1)′Θ2:end,j + Θ1,j))

= h(yij(q′(R−1)′Θ2:end,j + (X̄ ′
i,:W̄

′R−1)(R−1)′Θ2:end,j + Θ1,j))
= h(yij(q′vector + constant depending on example i + constant))

The resulting problem is then

minq,ρj ‖q‖2
2 + kX

kH

∑
j=1:k h(ρj)

subject to ρj = yij(q′(R−1)′Θ2:end,j + (X̄ ′
i,:W̄

′R−1)(R−1)′Θ2:end,j + Θ1,j)

which is almost the same as the usual SVM optimization, but for two differences. The first is that
the hinge loss for each example adds a separate constant that depends on that example; the second
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is that the trade-off parameter d has moved into the computation of q. Given a solution q∗, we can
use it and the substitution formulae to obtain p and then ζ = Z̄i,:, the row of Z that we seek.

3.3 Low-dimensional and feature-space discriminants

In addition to classification performance we are also concerned with understanding which voxels
provide information to the classifier. Given that we are learning a linear classifier, one such way
would be to understand which voxels influence it. If we were learning a classifier with voxels
as features, the weights assigned to them would be one possible gauge of such influence (but see
Chapter 2 and [11] for caveats). In our case, the classifier works in component-space, hence it’s
not immediately clear how voxels contribute.

To find such a contribution, consider that for every component-space discriminant (column of
Θ), there exists a voxel-space discriminant that is equivalent in the sense that it makes the same
predictions. Let us call the matrix of equivalent discriminants T , and have each column t be the
equivalent discriminant for the corresponding column of Θ, the vector θ.

In order to find T we need to state the requirement that equivalent discriminants make the same
predictions from Z or from ZW , i.e.

ZΘ = ZWT

and solve the resulting equation, Θ = WT . W ′Θ = W ′WT cannot be solved by multiplying by
(W ′W )−1, asW is singular. Instead, we will solve it considering that each column of T , t, can be
solved as a separate problem in terms of each column of Θ, θ:

mint
1
2‖t‖

2
2

subject to θ = W t

where, of the many solutions, we choose the one with the smallest norm. This can be converted
into an unconstrained optimization problem using Lagrange multipliers λ:

mint maxλ 1
2‖t‖

2
2 + λ′(θ − W t)

Differentiating with respect to λ and setting it equal to 0 gives us t = W ′λ. Replacing that in
the problem yields:

maxλ 1
2‖W

′λ‖2
2 + λ′(θ − WW ′λ)

. . .
maxλ −1

2λ
′WW ′λ+ λ′θ
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and deriving with respect to θ and setting it equal to 0

−WW ′λ+ θ = 0 ↔ λ = (WW ′)−1θ

The equivalent discriminant t is thus t = W ′λ = W ′(WW ′)−1θ, a linear combination of the
rows of matrixW .

It’s also possible to state the problem differently by defining the equivalent discriminants as T
such that:

ZΘ = XT

Solving the problem

mint
1
2‖t‖

2
2

subject to Zθ = Xt

in a similar way, we get an equivalent discriminant t such that t = X ′(XX ′)−1Zθ, a linear
combination of the rows of matrixX , the original examples.

3.4 Related Work

The most common approach to building low-dimensional representations that carry information
about a variable of interest is neural networks ([3]). In a typical neural network the hidden layer
contains a non-linear low-dimensional representation, on which one or more classifiers (output
units) are trained and used to predict the variable of interest.

There are two reasons why neural networks are not suitable for our purpose of building infor-
mative low-dimensional representations. Neural networks don’t perform as well as a linear clas-
sifier given as many features and as few examples as we have, if we use all the voxels as features
(see Section 2.1.3 of Chapter 2). Even if successful, they would not give us a way of summarizing
an example image as a sum of basis images. An auto-encoder network would give us something
closer to that but, as the goal would be reconstruction rather than classification, there’s no guar-
antee that the hidden units could be ascribed meaning by relating them to the target variable via a
classifier a posteriori. Having both decoder and classifier output units has been suggested before
([32]), though we were not aware of this work at the time of the publication of the first SVDM
paper ([57]). Given that we have had bad results for networks using all the voxels with tens of
examples in dataset D1 – they are almost always outperformed by linear classifiers – it is unclear
whether this approach would be worthy of further development.

An approach that maps the ability to predict a variable of interest to locations on a brain image
is Partial Least Squares (introduced in [48] and extended in [49]), works by decomposing a covari-
ance matrix between the values of voxels and the value(s) of the variables(s). This differs from our
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approach in that we use a SVM to learn the relationship between component coordinates and the
target variable, rather than look for correlations.

Another issue of concern in learning low-dimensional representations is the extent to which
they capture noise or other peculiarities of the training set that will not necessarily be present
or relevant in a test set. This has been studied for both PCA/SVD ([23]) and ICA ([28]), using
criteria that do not have anything to do with example labels. In our case, we would like to show a
component is relevant by being informative.

In addition to the above, the work described in this chapter draws on several lines of research,
in particular:

1. the use of additional regularization on classifiers such as logistic regression or SVM to reflect
domain characteristics and provide additional leverage in learning from sparse datasets

2. the use of linear classifiers to determine feature relevance, by considering the weights placed
on each feature by the learnt discriminant

3. the joint optimization of several desirable objectives, with some of them being related to
classification performance and others not (e.g. characteristics of the distribution of the unla-
belled data).

4. low-rank matrix factorizations of data enforcing particular constraints or regularization (e.g.
all entries of one of the matrices are positive)

The work most closely related in the first line of research is [63], as it describes the use of a 1-
norm linear SVM on SPECT (Single Photon Emission Computed Tomography) imaging data, using
voxels as features. The authors solve a modified SVM problem that favours weight vectors where
neighbouring voxels have weights of similar magnitude. The goal is to lead to a linear classifier
that uses only a few contiguous brain locations, to make interpretation easier and to prevent it from
assigning weight to individual noisy voxels.

In the second line of research, [21] suggested that the weights of a successful linear discrim-
inant can provide a better indication of a feature’s relevance for classification than criteria that
rely on each feature by itself; our work shares this intuition. However, instead of looking at the
original feature space directly, we learn a classifier on a low-dimensional subspace and propagate
the weights back to the original space, thus coupling them further than a classifier by itself would.
Another difference is that the authors wish to select a few features by eliminating correlated ones,
while we wish to combine and summarize the collective activity of correlated features and not
eliminate them. A more general treatment of combined SVM-based feature selection and classifi-
cation is given in [53]. Our work deviates from it in using reconstruction error and the coupling
of features via a matrix decomposition as additional regularization criteria, instead of using more
traditional criteria such as various norms of the learnt weight vector.
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The learning of a metric suitable for classification as well as other goals is a good example
of the third line of research. Both [69] and [17] introduce algorithms for learning a Mahalanobis
distance metric for use in nearest-neighbour classification, differing in the objective used and its
relation to the classification error. This is in contrast with other metric learning methods insofar as
it optimizes directly for classification instead of other related criteria (e.g. the clustering measure
in [72]). Our work is more related to [17] in that the metric introduced there can be used to do a
linear projection of the data into a low dimensional space, much as we aim to do by finding a basis
and then reducing each example vector to its coordinates in that basis.

The use of the reconstruction error for regularization and the matrix decomposition to further
couple weights in the original matrix - while using the learnt low dimensional representation for
classification - was inspired by the maximum-margin matrix factorization described in [62], work
squarely in the fourth line of research.

3.5 Experimental Results

3.5.1 Datasets

In the experiment performed to obtain these datasets the subject is shown a series of words. Each
word is the name of an item which is either a kind of tool or a kind of building, and the subject
performs the following task: think about the item and its properties while the word is displayed (3
seconds) and clear her mind afterwards (8 seconds of blank screen).

In all four datasets a trial is converted into an example by taking the average image during a 4
second span while the subject is thinking about the stimulus shown a few seconds earlier (these 4
seconds contain the expected peak of the signal during the trial, TR=1000msec).

• Dataset D1
There are 7 different items belonging to each of the two categories and 6 experimental
epochs. In each epoch all 14 items are named, without repetition; all 6 epochs have the
same items. Using each trial to obtain an example, this yields a total of 42 examples for
each of the two categories. The classification task is to predict the category of a example.
This dataset has three subjects.

• Dataset D2
This dataset is very similar to dataset D1 except for the fact that both word and picture
stimuli were used, in alternation. We excised the picture stimulus portion of the dataset (the
category classification task is far too easy) and retained the text stimulus portion as dataset
D2. The classification task is to predict the category of a example. There are 5 items of
each category and 6 experimental epochs, which gives us a total of 30 examples for each of
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the two categories. This dataset has three subjects (the three best ones from dataset D2 in
Chapter 2)

For more details on the datasets please refer to Section 2.3.1 in Chapter 2.

3.5.2 Classification experiments (algorithm B)

Procedure

The experiments described in this chapter were almost all done using algorithm B, except for those
where algorithms A and B are compared (and this is explicitly noted in the text and figure legends).
This was done because algorithm B is roughly two times faster than algorithm A and also because
it is easier to search for a value of its tradeoff parameter, as it is less dependent on the scale of the
data (Section 3.5.4 has more details on comparing the two algorithms).

For a given dimensionality/number of components l (that is, Z has one column of 1s and l other
columns) we ran a 6-fold cross-validation, corresponding to a natural division of the dataset into
the 6 epochs of task performance by a subject. We also tried several settings of the d parameter to
give a broader picture of its influence.

All of the experiments described in this chapter are done using 6-fold cross-validation, leaving
data from each of the 6 experimental epochs as test data in turn and training on the remaining ones.

The classifiers used for comparison were either a Gaussian Naı̈ve Bayes (GNB) [52] or a linear
Support Vector Machine (SVM, using libSVM [10]). The linear SVM tradeoff parameter was
set using cross-validation within the training set. The class conditional variance of each feature
in GNB was estimated by pooling data from both classes after the class conditional means were
subtracted. The cross-validation and task were exactly the same as for the SVDM experiments.

Results

Figure 3.1 displays the results obtained using SVDM models to do the category classification task
in datasets D1 and D2, respectively in the top and bottom sections. The section for each dataset
contains 6 graphs, one per setting of the tradeoff parameter d. d could also be set via cross-
validation within the training set, by selecting the highest D that can learn an accurate prediction
model, as verified in [57]. This would be analogous to setting the tradeoff parameter in an SVM
to the largest possible margin that works well in the training set. We refrain from doing this
here in order to show the full gamut of model behaviour, rather than just that which leads to the
best classification accuracy. Each graph plots the classification accuracy of the model learnt with
that setting and using between 1 and 24 components; this is the number of dimensions in the
representation learnt and thus of rows in theW matrix, where each row is a basis image/component.
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There are three solid curves in each graph – red, green and blue, one per subject – plotting test
set accuracy in cross-validation. The numbers below each graph are the peak accuracies for each of
the three subjects (first line) and the smallest number of components at which peak accuracy was
attained (second line). Each accuracy number is the average accuracy over 10 runs of the algorithm
using different random seeds; these affect the initial random guesses for the three matrices the
algorithm learns. Finally, the dashed curves are the same, except for training set rather than test set
accuracy. . The figures displaying accuracy plots through this chapter will be consistent with the
style used in this one and, in the interest of brevity, most of the details will be omitted from figure
captions.

Convergence

As described earlier, the algorithm iterates through solving three subproblems whose objectives are
convex in alternation. The global objective never increases and converges to a local minimum of
that global objective, with the criterion for convergence used being a change of less than 0.5% in
the objective. Given that criterion, the running time is roughly linear in the number of examples
and components.

3.5.3 Comparison with classifiers

Accuracy and discriminants learnt

In order to compare the model learnt by SVDMwith conventional classifiers, one can consider both
the peak classification accuracy and the voxel space discriminant learnt. The latter is easy to obtain
for conventional linear classifiers, and Section 3.3 describes how one can obtain a voxel space
discriminant that makes the same predictions as the discriminant in the low-dimensional space of
the SVDM model. In all the voxel space discriminant plots in this chapter what is being plotted
is the absolute value of the discriminant weight, so that the weight magnitude is more evident.
Without this, some weights would be dark red (high, positive, leans the classification towards class
1) and others dark blue (high, negative, leans the classification towards class 2).

Figure 3.2 contrasts, for subject 01481B in dataset D1, the best SVDM model (top, using
d=2) with SVM (middle) and Naive Bayes (bottom) classifiers, in terms of both the voxel space
discriminant learnt and the peak accuracy reached (the number in parentheses). Figure 3.3 and
Figure 3.4 show the same for the other two subjects in dataset D1, and Figure 3.6 and Figure 3.7
for the three subjects in dataset D2.

In terms of accuracy, SVDM performs roughly as well as a linear SVM using all the voxels
and much better than Naive Bayes, for both datasets. The voxel space discriminants learnt are,
again, very similar between SVDM and SVM, with Naive Bayes generally producing a noisier
discriminant. Note that all three put high weights on similar locations, with GNB weighing many
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Figure 3.1: Classification results for SVDMmodels learnt with algorithm B. Top: Dataset
D1 (subjects 01481B,01482B,01897B): each graph shows the accuracy (y axis) for one
setting of the d parameter across a number of components ranging from 1 to 24 (x axis).
The solid lines plot average test set accuracy across cross-validation folds for the three
subjects, the dashed ones training set accuracy. Each line is the average of 10 restarts
of the algorithm using different random seeds. The numbers below each graph are the
peak accuracies for each of the three subjects and the smallest number of components at
which peak accuracy was attained. Bottom: The same for the three subjects in dataset D2
(02497B,02509B,02714B).
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other voxels in addition. Although we do not detail that here, we have preliminary evidence on
dataset D1 and D3 that the voxels weighted by GNB but not by SVM/SVDM are voxels with fairly
high correlation between each other. This is a sign of one of the effects of the regularization on the
L2 norm of the weight vector done by SVM or SVDM, which lowers the weights of very correlated
voxels (whereas GNB would weight them all the same way); this is a question we are investigating
further.

Regions identified

A second kind of validation for the discriminant model learnt with SVDM is examining the brain
regions where it places the most weight. As detailed in Section 2.4 for the case of dataset D1, we
have both prior expectations of whether certain brain areas will be involved (e.g. voxels around the
central sulcus or the parahippocampal gyrus) and also some information about locations of voxels
deemed significant in searchlight accuracy maps.

Figure 3.8 shows the voxel space discriminants learnt with SVDM for the three subjects in
dataset D1 with annotations highlighting how they place weight in those two areas. The locations
are similar to those found by plotting significant searchlight accuracy maps (see Section 2.4 for
details and figures with the structural MRI images for the three subjects). Again, what is being
plotted is the absolute value of the discriminant voxel weight, so that the weight magnitude is more
evident. This said, the discriminant places weight in several other locations, some of which are
also significant in searchlight accuracy maps and others which are not.

3.5.4 Algorithm A versus algorithm B

Motivation

Algorithm A was developed first and introduced in [57]. Algorithm B was developed subsequently,
in an effort to simplify the various optimization subproblems by removing constraints and making
them more similar to a conventional SVM. The main question while developing algorithm B was
whether it would reach a solution to the SVDM problem similar to the one algorithm A would,
both in terms of the model learnt and also of classification performance.

Why would one choose one algorithm over the other? Aside from the technical differences
described in Section 3.0.6 and Section 3.2, there are other relevant practical issues. The first stems
from the fact that algorithm A trades off the reconstruction error and hinge loss terms directly.
This tradeoff involves both the magnitude of the error and also the size of the reconstruction error
matrix (#examples by #voxels) versus the much smaller size of the hinge loss matrix (#examples
by #problems). Algorithm B uses instead the average reconstruction error over all matrix entries
and similar averages for the other matrices in its objective. This makes it simpler to do a search for
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Figure 3.8:
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the value of the d parameter, as a small range (say [0, 10]) seems to suffice to cover the gamut of
model behaviours.

A second issue is the speed at which the SVDM can be trained. Empirically, we’ve found that
algorithm B is roughly 2 times faster than algorithm A at training a model with the same number
of components, over a range of numbers of components and settings of the tradeoff parameter. In
addition, the optimization sub-problem for Θ is a standard SVM problem and the one for Z can be
modified to be similar to one; this would allow better performance if we replaced those steps with
off-the-shelf packages (or simple modifications of those).

Results

Figure 3.9 shows the classification results in dataset D1 using the two algorithms, for a range
of settings of the d parameter in each. The peak accuracies attained with either algorithm are
comparable, as are the curves as the number of components is increased; the results appear to be
slightly more variable across seeds in algorithm B results, for a given d and number of components.
The most likely source for this is the optimization objective for the Z subproblem leading to some
numerical instability near the solution.

A few discriminants learnt for the three subjects are shown in Figure 3.10, Figure 3.11 and
Figure 3.12. The discriminants were obtained using the same number of components for all subjects
and a seed that gave the same accuracy results for both algorithm A and B in all cross-validation
folds, yielding very similar discriminants. Given that and the faster speed of algorithm B we will
use algorithm B for the remainder of this chapter and also Chapter 4, except where otherwise noted.

3.5.5 Algorithm B versus SVD and ICA

Procedure

Singular Value Decomposition (SVD) and Independent Component Analysis (ICA) are two popu-
lar methods for generating low-dimensional representations of a dataset without referring to class
labels. The question we are interested in is whether these low-dimensional representations are in-
formative, i.e. can they be used to predict class labels; if so, we also want to know how they fare
compared with SVDM.

Both methods can be used to generate matrix factorizations X = ZW akin to that produced
with SVDM:

• SVD: X = USV ′ Z = U ∗ S W = V ′ (using MATLAB and our own code)

• ICA: X = ZW , where W are the independent components and Z is the mixing matrix
(using FastICA, [22])
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Figure 3.9: Top: Classification results for Algorithm A SVDM models trained on the
three subjects in dataset D1. Each pane shows the results for one setting of the d param-
eter across a number of components ranging from 1 to 24 [TODO: redo A plot for 24
components]. The solid lines plot average test set accuracy across cross-validation folds
for the three subjects, the dashed ones training set accuracy. Each line is the average of 10
restarts of the average using different random seeds. Bottom: The same for Algorithm B
SVDM models (same results as in Figure 3.1).
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and those representations can be tailed to use a given number of components (columns of Z or
rows ofW ).

In order to compare the low-dimensional representation of the data learnt with SVDM with
that learnt with SVD or ICA, we trained classifiers – Naive Bayes and linear SVM – from those
representations to perform the same classification task described in previous sections.

In this comparison we are concerned mainly with accuracy and how quickly it is attained.
Another direction of comparison would be to see whether the learnt basis images produced by
either SVD or ICA were, in a sense, interpretable, similarly to what is done in Section 3.5.3. While
we will not purse this issue further here, there are indications that spatial ICA basis images tend to
be more interpretable than SVD, as judged by the time course corresponding to each basis image
and the fact that they will generally be sparse and have non overlapping locations [5]. In spatial
ICA, however, it’s also often the case that task related activity in different classes that overlaps
spatially (e.g. the one in [26]) will tend not be separated into different basis images, which would
be the desired behaviour in order to classify from the corresponding time courses.

Results

We generated low-dimensional representations using from 1 to 24 components from the training
data in each cross-validation fold using both methods. Using those low-dimensional representa-
tions we then trained both Naive Bayes and linear SVM classifiers and used them to classify the
test data. The results of this are shown in Figure 3.13 for dataset D1 and in Figure 3.14, for dataset
D2, together with similar result curves for a SVDMmodel (d=0.2) using the corresponding number
of components.

We can also compare the various methods by looking at the peak accuracy they can reach
regardless of the number of components, by considering Table 3.1. The main conclusions are that
SVDM attains peak accuracy using fewer components than SVD or ICA and, moreover, that peak
accuracy is the same or higher.

Conversely, one could ask whether it is the classifier part of SVDM (the Θ matrix) or the low-
dimensional representation (Z) that are responsible for the performance. We verified in [57] that
the low-dimensional representation learnt with SVDM can be used with linear SVM or Gaussian
Naive Bayes classifiers with virtually the same results as using the classifier part of SVDM, show-
ing that informative components were learnt. We do not show the result curves here mainly because
they are practically indistinguishable.

3.5.6 Constraining the number of informative components

One important question to ask of a learnt SVDM model is which components have a relationship
with the classification label(s) and thus are informative for the classifier portion of the model. Ex-
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Figure 3.13: Row 1: Classification results for Algorithm B SVDM models (left) for the
three subjects in dataset D1 versus the results of Naive Bayes (middle) or SVM (right)
trained on SVD-generated low-dimensional representations. Each pane shows the results
across a number of components ranging from 1 to 24, using d=2 for the SVDM. Row 2:
Same as Row 1, but on ICA-generated low-dimensional representations.
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Figure 3.14: Rows 1/2: Same as Rows 1 and 2 in Figure 3.13, respectively, but using
dataset D2.
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method
subject/dataset SVD ICA all voxels

peak #comp. peak #comp.
Dataset D1 linear SVM
01481B 0.75 40 0.71 40 0.82
01482B 0.71 13 0.69 40 0.75
01897B 0.74 40 0.75 40 0.70

GNB
01481B 0.75 40 0.64 30 0.65
01482B 0.73 40 0.65 30 0.63
01897B 0.75 13 0.69 30 0.69

Dataset D2 linear SVM
02497B 0.83 40 0.80 15 0.83
02509B 0.78 40 0.75 40 0.78
02714B 0.90 30 0.88 30 0.90

GNB
02497B 0.82 40 0.80 30 0.73
02509B 0.75 40 0.73 40 0.73
02714B 0.88 30 0.80 20 0.83

Table 3.1: Peak accuracy of classifier (linear SVM or Gaussian Naive Bayes) trained on
a low-dimensional representation produced with SVD or ICA (using between 1 and 40
components) or on all voxels. The top half of the table pertains to dataset D1, the bottom
half to dataset D2.
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amining the voxel-space equivalent discriminant considers the aggregate effect of all components
and is thus not suitable for this purpose. A more appropriate approach is to examine the Z ma-
trix directly and consider the columns for which the corresponding Θ weights are not zero. These
columns correspond in turn to the components that affect the learnt discriminant.

To make this more concrete, Figure 3.15 shows the Z matrices learnt on each of six cross-
validation folds for one subject, using 10 components (top left), and the corresponding Θ vectors
(top right). The higher the absolute value of an entry in a Θ vector, the more it influences classifi-
cation; note also that all non-zero entries will influence the classification. In each training dataset
the example labels alternate in groups between the two classes, “tools” and “buildings”, and this
is visible as the red/blue alternation in column 7 of the Z matrix, which is one with the highest
absolute value. The value of Θ indicates how helpful to prediction each component is but, given
that most of them influence prediction and that there are positive and negative weights (which can
make components offset each other) it’s harder to say which components are truly informative.

This gives rise to an interesting possibility: constraining most Θ weights to be zero, freeing
the respective components to be used in lowering reconstruction error and forcing the remaining
components to focus on classification. As an illustration of the effect, consider Figure 3.16, which
shows the same matrices depicted in figure Figure 3.15, using the same number of components but
constraining all but 2 of them to have Θ =0 . The effect is to make the 2nd column of Z have a
much more pronounced alternation between examples of the two classes, with the corresponding
component being sparser than the others.

Given that this approach has the desired effect on the learnt model, the next question to ask is
whether if affects classification performance. Figure 3.17 shows the result curves obtained letting
all, half and a quarter (rounded down) of the components influence the learnt discriminant, for
the two datasets and with two different settings of D. From these it seems reasonable to conclude
that constraining does not affect the accuracy of the learnt models and, moreover, leads to similar
performance curves as the number of components is increased.

Given that classification performance is very similar regardless of restriction, the final question
to ask is how restriction affects the learn model in general. Figure 3.18 shows the learnt com-
ponents for the three subjects, letting all, half and quarter of the components influence the learnt
discriminant, (when using 10 components, for the sake of example). The breakdown of informative
and non informative components is clearly visible in the columns that alternate between the two
labels. Figure 3.19 shows the same for subjects in dataset D2.

Finally, one can ask whether constraining component influence leads to different voxel space
discriminants. Figure 3.20 contrasts the voxel space discriminants obtained letting all, half and
quarter of the components influence the learnt discriminant for subject 01481B, with Figure 3.21
and Figure 3.22 doing the same for the other two subjects in D1 and Figure 3.23, Figure 3.24 and
Figure 3.25 for the three subjects in dataset D2.

Even when severely constraining the number of components the discriminants learnt are still
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Figure 3.15: Matrices learnt for one subject in 6 crossvalidation folds (Z and Θ, top left
and middle), correlation of columns of the Z matrices (top right).
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very similar, and this happens for all subjects in the two datasets. One possible reason for this is the
fact that this is a two class problem and hence not too many components are necessary to produce
a reasonable discriminant.

In conclusion, restricting the number of components that can affect the learnt discriminant by
setting most of the discriminant weights to 0 is feasible and produces the desired effect, without a
performance penalty. This approach still requires setting the number of components that can affect
prediction, but Chapter 4 will describe a method for doing so automatically.
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Figure 3.16: Same as Figure 3.15, but allowing only the first two entries in each Θ vector
to be different from 0.
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Figure 3.17: rows 1/2: Classification results for Algorithm B SVDM models trained on
the three subjects in dataset D1, letting different numbers of components influence the
learnt classifier (row 1: d=0.5, row 2: d=2). Left is all the components, middle is half the
components and right is a quarter of the components, rounded down. rows 3/4 The same
for dataset D2.

137



20
40
60

20
40
60

20
40
60

20
40
60

20
40
60

2 4 6 8 10

20
40
60

2 4 6 8 10 2 4 6 8 10

(a) 01481B (all/half/quarter)

20
40
60

20
40
60

20
40
60

20
40
60

20
40
60

2 4 6 8 10

20
40
60

2 4 6 8 10 2 4 6 8 10

(b) 01482B (all/half/quarter)

20
40
60

20
40
60

20
40
60

20
40
60

20
40
60

2 4 6 8 10

20
40
60

2 4 6 8 10 2 4 6 8 10

(c) 01897B (all/half/quarter)

Figure 3.18: Low-dimensional representations Z learnt for the three subjects in dataset
D1, letting different numbers of components influence the learnt classifier while using
10 components (for each subject there are three columns, all, half or a quarter of the
components, rounded down). The six rows correspond to the six cross-validation folds, as
in Figure 3.16.
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Figure 3.19: Same as Figure 3.18, for dataset D2.
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Chapter 4

SVDM extensions

In this chapter we show how the SVDM algorithm can be modified to produce solutions where
very few dimensions are used in prediction, while maintaining classification and reconstruction
performance at the same level of the original algorithm. Furthermore we show how the algorithm
can be adapted to work with more than two classes, apply SVDM to relevant fMRI datasets and
show that it compares favourably with linear SVMs in terms of classification accuracy. In addition
we show that the low-dimensional representations learnt can capture relationships between classes.
Finally, we introduce two different ways of extending the SVDM algorithm so that fMRI data from
multiple subjects can be used. We show that it is possible to learn multisubject models that perform
as well as single subject models, using either approach.

4.1 Adding regularization through constraints and penal-
ties

One advantage of the matrix formulation in algorithm B, described in Section 3.2 of Chapter 3, is
that it is conceptually easy to add constraints or penalties on any of the three matrices in the solution
to the optimization problem. The most obvious of these are constraints on the components, the rows
of the W matrix, which can be viewed as basis images for reconstruction. The basis images can
be made sparse (few voxels active), smooth (neighbouring voxels tend to have similar values) or
have activation fixed or encouraged in brain locations known to be relevant. It is also possible to
constrain voxel behaviour across basis images, each voxel being a column of the W matrix. Voxels
can be encouraged to be active sparsely (in as few basis images as possible) or to be active in
examples belonging to a subset of experimental conditions, for instance. Constraints and penalties
can also be added to the Z or Θ matrices, respectively the low-dimensional representation and the
linear classifier weights. Doing it on the former would make sense if one wanted to make sure a
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given basis image is shared by particular experimental conditions, for instance. Doing it on the
latter is similar to penalizing the weight vector in a SVM.

In general, any penalty can be added to the global optimization problem as long as it is a convex
function of one of the three matrices W ,Θ or Z and its coefficient is positive. If this is the case,
each of the the subproblems, where any two of the three matrices are fixed, remains convex. This
section illustrates the effect of several different penalities on the solution, several of which will be
used in other sections.

4.1.1 Implementation of a smoothness penalty

The algorithms described in the previous chapter find W by solving one regression problem for
each of its m columns (voxel across all basis images). In order to place a constraint or a penalty
over an entire row of W , it is simpler to solve for entire rows of W simultaneously instead. This
can be done by noting thatX ≈ ZW can be decomposed into a sum of matrices where each matrix
involves a single row ofW , i.e.

X ≈ ZW = Z:,1W1,: + . . . Z:,lWl,:

Given this, the problem of findingW can be decomposed into a series of least squares problems:
find rowWi,: such that, multiplying by Z:,i, gives the best fit to the residual

X − (Z:,1W1,: . . . Z:,i−1Wi−1,: + Z:,i+1Wi+1,: + . . . Z:,lWl,:)

in the least squares sense. This is iterated until W converges.

The objective of each of these sub-problems contains only a squared error term. It is thus easy
to add terms penalizing the difference between each voxel j and its neighbours in the ith row of
W ,Wi,::

m∑

j=1

#neighboursj∑

k=1

(Wij − Wik)2

Adding this to the optimization problem for W in Section 3.2.2 in Chapter 3 gives us the
objective (X̄ is the dataset matrix with its mean subtracted):

‖X̄ − Z̄W̄‖2
Fro + λ

l∑

i=1

m∑

j=1

#neighboursj∑

k=1

(W̄ij − W̄ik)2

The results presented in the next section show the effect of introducing this penalty using λ = 1
as the setting for the tradeoff parameter. We’ve found the degree to which smoothness was present
could vary noticeably with changes of a few orders of magnitude in λ, and in general it will have
to be set to take into account the value scale ofX .
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4.1.2 Results

Figure 4.1 compares the accuracy of the model learnt by algorithm B incorporating the smoothness
penalty – with a fixed weight of 1 on the penalty relative to the reconstruction error term in the
objective – with the one produced using just algorithm B, settingD = 0.1, on datasets D1 and D2.

Given that the accuracies reached are similar, to see the effect of adding this penalty one needs
to either look directly at the basis images learnt or at the voxel space discriminants, a linear com-
bination of those basis images (as shown in Section 3.3 in Chapter 3). The latter are shown in
Figure 4.2, Figure 4.3 and Figure 4.4 for the subjects in dataset D1 and Figure 4.5, Figure 4.6 and
Figure 4.7 for the subjects in dataset D2. It is clear that the approach used leads to smoother basis
images and thus to a smoother voxel space discriminant.
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Figure 4.1: A comparison of the accuracies obtained using the smoothness penalty (left)
and without using it (right), for datasets D1 (top) and D2 (bottom), using D=0.1.
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4.1.3 Automatically constraining the number of components used

Implementing a sparsity penalty

An original goal for the SVDM algorithm was to find informative components, i.e. which could be
related to the classification label(s). The way such a relationship manifests is through the Z matrix
having structure related to the labels (e.g. a column being negative for examples with one label
or positive for examples with another label). The informative components are those for which the
corresponding column of Z has Θ weights which are not zero.

Intuitively, the fewer columns are related to the classification problem the easier it will be to
determine what the relationship is. As evidenced in Section 3.5.6 in Chapter 3, the algorithm will
find many such components that are related to the target variable, even though one would suffice in
the two class problems considered there. In the same Section we’ve seen that explicitly constrain-
ing a number of the entries of Θ to be 0 is a viable approach to ensuring that the corresponding
components do not affect the learnt classifier; this makes it easier to relate the remaining basis im-
ages to the classification task. This does raise the question of how to decide how many components
are allowed to affect the learnt classifier.

A more principled way of encouraging the algorithm to use a sparse Θ is to penalize having
too many of entries of Θ be non-zero, rather than explicitly zeroing them. The easiest way to
enforce this penalty is to alter the ‖Θ‖2

Fro term in the global objective, as this term appears only
in the Θ subproblem. Replacing the term by ‖Θ‖1 =

∑
ij |θij | should encourage sparsity in Θ

and, by making entries 0, reduce the number of columns of the low-dimensional representation Z
influencing the learnt classifier.

Results

Figure 4.8 shows that the same peak accuracy can be obtained with or without the penalty encour-
aging sparsity. The voxel-space discriminants learnt are similar, as shown in Figure 4.9, Figure 4.10
and Figure 4.11, for dataset D1, and Figure 4.12, Figure 4.13 and Figure 4.14, for dataset D2. The
difference in the learnt models is visible in Figure 4.15 and Figure 4.16, for datasets D1 and D2
respectively. Each figure is divided into three parts (top,middle,bottom) corresponding to three sub-
jects. Inside each part, the left side shows the low-dimensional Z matrices learnt with the original
algorithm in each of six cross-validation folds, and the right side the ones learnt using the penalty.
Right next to each group of six matrices there is a scale where examples from one class are blue
and those from the other class are red. Under each of the six matrices is a square correlation matrix
showing how the columns in the matrix correlate (dark blue and red are -1 and 1 correlations, re-
spectively). The effect of the penalty is to make most columns of the learnt Z matrix be unrelated
to the example labels, while leaving one or two that are strongly related (very high or very low for
all the examples). In contrast, the original algorithm will make most columns be somewhat related
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to the target label (visible as a colour breakdown in the learnt matrices) and, incidentally, correlated
to a large extent (expected, given that this is a binary classification problem).

Given that the SVM and SVDM discriminants are so similar and that, in the limit, we could
end up with a single informative component in a two-class situation, it’s legitimate to ask whether
the SVDM can learn a classification model that is different from a SVM. One possible way of
doing this is to add regularization reflecting domain specific feature characteristics that would be
harder to do directly on the SVMmodel. We’ll also see in Section 4.2 that a different model can be
learnt in the multiclass case where there is scope for the low-dimensional representation to capture
commonalities between classes.
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Figure 4.8: A comparison of the accuracies obtained using the penalty encouraging Θ
sparsity (right) and without using it (left), for datasets D1 (top) and D2 (bottom), using
D=0.1.
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Figure 4.15: A comparison of the Z matrices learnt using the original algorithm (left, 12 compo-
nents,D=1) and the algorithm with a penalty encouraging Θ sparsity (right, 12 components,D=1),
for the three subjects in dataset D1 (top, middle, bottom). For each algorithm/subject combination
we can see six Z matrices (one per cross-validation fold) and, underneath, six square matrices with
the correlation between the columns of the corresponding Z matrix. Next to each set of six a scale
shows example class (blue or red). The penalty makes most columns of the learnt Z matrices be
unrelated to the example labels.
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Figure 4.16: Same as Figure 4.15 for dataset D2.
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4.1.4 Other extensions

Composite penalties

The two previous sections show how to encourage desirable properties in the Θ and W matrices
separately. It is also possible to do both things simultaneously if, again, each of the three matrix
optimization subproblems still remain convex. For certain problems, however, the only feasible
approach is to divide the optimization procedure into stages.

To illustrate this, let’s consider a situation where we would like to have a sparse (low L1-
norm) voxel space discriminant. One way of doing this would be to try to have the rows of W
be sparse, so that the weighted combination of those rows making up the discriminant would be
sparse as well; this would be similar to making the rows smooth, as described in Section 4.1.1.
This seems inappropriate, however, in that most rows of W need not be sparse, as they will not
affect the discriminant. Making such rows sparse is also at odds with the goal of reconstructing
the data matrix well, in that the rows would be a worse basis (because most voxels would have less
activation and more components would be needed than before). The question is then how to enforce
the sparsity only for the rows ofW that correspond to columns of Z involved in classification.

Our approach to doing this has two stages. The first is to solve the usual SVDM problem with
the L1 penalty encouraging sparsity on Θ, which will tell us which columns of Z are informative
for each classification problem. In the second stage,Θ is held fixed and we solve forW and Z such
that, for columns of Z that affect classification, the corresponding row ofW is sparse. In practice
this does work, in that it produces sparser rows ofW when the corresponding entries inΘ are used
in classification. However, it does not produce any substantial improvements in classification and
thus we will not provide any additional material regarding it; we present the procedure to illustrate
a way of specifying a relatively complex property for the solution of the optimization problem
while maintaining the convexity of the subproblems.

Different bases

A different direction for extension would be to change the criteria for what a good reconstruction
is or even away from reconstruction altogether. An example of the former would be to penalize
reconstruction error with something other than squared error, which would be appropriate if we
thought the data were corrupted by non-gaussian noise. For the latter, we might want to consider
making the rows ofW be independent (as in spatial ICA, [5]), for instance.

For the first option, we would need the penalization to still be a convex function whenW and
Z are variables in their respective optimization sub-problems. For the second option, one would
have to treat theW problem as that of finding a basis of independent components given the mixing
matrix Z. The Z subproblem would be similar to what we currently have.
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4.2 Multiclass and multitask learning

4.2.1 Setting

The classification tasks thus far have all been binary. As pointed out in Section 3.1 and Section 3.2
of Chapter 3, the SVDM algorithm is designed to learn an arbitrary number of classification prob-
lems simultaneously. Those problems are represented by the k columns in the label matrix Y , and
predicting label j of example i correctly entails predicting entry (i, j) in the label matrix correctly.

The following are some possible circumstances where it would be necessary to have multiple
columns in the label matrix Y :

1. multiple classes (e.g. predict which of 8 categories a subject is thinking about )

2. multiple problems (e.g. predict which of 2 categories a subject is thinking about, predict
whether the stimulus is a word or a picture)

3. hierarchical (e.g. predict which of 2 categories a subject is thinking about, predict which
exemplar in that category)

The first situation is the usual kind of multiple class problem; the others are multitask learning
situations, where one expects that learning how to make one of several predictions will help one
do better in others than one would learning them by themselves. Regardless of the situation, the
first goal is to be able to classify correctly in a multiclass situation and the second is to use the
low-dimensional representation learnt by SVDM to identify the relationship between the different
classes.

4.2.2 Algorithm

The algorithm used to learn the SVDM is the one described in Section 3.2 of Chapter 3, Given that
the algorithm can only deal with binary classification problems, one per column of the Y matrix,
it is necessary to encode a multiclass problem as a series of binary problems. We considered two
ways of doing this: converting to a set of one-class-versus-all-others problems or using an error-
correcting output code (ECOC, [14]). It’s possible that, in using either method to convert to binary
problems, there is an imbalance between -1 and +1 labels in some of the columns of Y . If that
happens, the hinge loss term h(ρij) for examples with the label in the majority can prevail and the
model may sometimes opt to predict that label for all examples.

To address this issue, we weigh every hinge loss term with a constant weight that reflects the
ratio of labels. For instance, imagine that there are 3 −1 labels for each +1, which could happen if
encoding a 4 class problem as 4 one-class-versus-rest problems. Then, the hinge loss terms in each
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column for +1 examples will receive weight 1 and the those for −1 examples will have weight
1
3 . Empirically, across various datasets and tasks, we’ve found that this had the desired effect in
preventing default classification with the majority label.

The optimization objective then becomes

1
kX

‖X − ZW‖2
Fro +

1
kH

∑

i=1:n,j=1:k

aijh(ρij) + d(
1
kZ

‖Z‖2
Fro +

1
kΘ

‖Θ‖2
Fro)

where ρij = yijZi,:Θ:,j and aij is the weight described above.

4.2.3 Experiments

Datasets

The following sections present results obtained using two multiclass datasets, M1 and M2. The
datasets were chosen for the fact that a classifer using all the voxels can still perform much better
than random and reasonably well when compared to a classifier using voxel selection achieving
peak performance. Furthermore, and given that this is currently work in progress, we considered
only the best subject from each of the studies for the purposes of comparison with SVM and
examining the model learnt.

The source studies use picture stimuli, with each stimulus belonging to one of several semantic
categories. Dataset M2 is the same as dataset D3 in Chapter 2. It contains all the voxels in the
subject’s cortex, and each example is the average image in a block where the subject sees stimuli
belonging to the same category.

Dataset M1 does not contain the whole cortex but only a subset of voxels selected with a
localizer scan (separate dataset, used to select voxels shown to behave differently in data from the
four classes pooled together versus a baseline of scrambled object stimuli). Stimuli are shown in
a fast event related paradigm and examples created from an entire run by using the coefficients of
a regression of each voxel on regressors containing predicted time courses for responses to each
condition. Table 4.1 summarizes this information. The datasets were kindly provided by Nancy
Kanwisher and Leila Reddy (M1,unpublished) and by James Haxby (M2, same as D3,[26]).

Learnt Models

The SVDM models trained all used the penalty encouraging sparsity on Θ (described on Sec-
tion 4.1.3), in order to narrow the number of informative components. The SVMs trained on all
voxels for accuracy comparisons had their parameter set using cross-validation over the training
data. In all cases the classification task is to predict the category of the stimulus corresponding to
an example, using a one-class-versus-rest binary problem encoding.
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dataset # classes # examples #voxels stimulus categories
M1 4 40 ∼ 4K faces, objects, scenes, body parts
M2 8 96 ∼ 24K faces, houses, cats, scissors

shoes, chairs, bottles, scrambled

dataset design example source
M1 fast event related 1 example per category, computed from multiple items, ×10 runs
M2 block 1 example per category block, one block of each category, ×10 runs

Table 4.1: Characteristics of the two multiclass datasets used.

Table 4.2 shows the results obtained, averaging the performance of the algorithm starting with
five different seeds in the case of SVDM. SVDM can perform better than SVM and the pattern
holds for other subjects in the case of dataset M1 (not shown here). It’s also possible to obtain
slightly better results - a few% higher in accuracy, in the limited experiments we ran - by using an
error correcting output code; this happens at the cost of having more trouble in relating informative
components to labels and vastly increased computation time, given that the procedure requires
generating tens of learning problems rather than just as many as there are classes. For that reason
we will not pursue that avenue further in this chapter and will instead examine models learnt with
a one-versus-rest encoding.

study SVM (all voxels) SVDM (5-seed avg) chance with voxel selection
M1 0.60 0.74 (#components=20,D = 1) 0.25 high 70s to low 80s
M2 0.57 0.65 (#components=40,D = 1) 0.125 70s

Table 4.2: Results of training a one-class-versus-rest SVDM and a linear SVM on three
different datasets.

Figure 4.17 shows the Θ and Z matrices learnt on dataset M1, broken down in a particular
way. First, note that there are as many columns as there are cross-validation folds, with each
column containing the matrices learnt from the training data in the corresponding fold.

Figure 4.18 focuses on a single column (the 10th), to make it easier to describe the figure. From
the top, there are 4 classification problems (each class versus all the others, with the 4 classes being
faces, scenes, objects and people). Following that, we have the informative portion of theΘmatrix
(the rest is 0 and not shown, since we are using the L1 SVDM described earlier). Θ is transposed
so that row i of each matrix contains the coefficients used in the classifier for problem i (class i
versus the others). Each colum corresponds to a column in the informative part of Z. Below Θ we
have the informative part of the Z matrix (columns that have corresponding non 0 Θ coefficients)
and below that the uninformative part (used solely for reconstruction), respectively.

Note how some of the rows of Θ have multiple non zero entries (indicating that more than one
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component contains information about that classification problem) and some of the columns also
have multiple non zero entries (indicating that a component is shared across classification prob-
lems). The latter may indicate an area with opposite patterns of activations for scenes and people.
Similarly, there is another area with opposite activation between scenes and objects. To examine
this, a domain expert would have to consult the third basis image in Figure 4.19, which shows the
basis images (rows of W ) corresponding to the informative dimensions in the Z matrix. We were
not able to obtain structural images and do this in time for the completion of this dissertation, but
intend to pursue this direction in the future.

Figure 4.20 shows a comparison of the average cross-validation fold discriminants learnt by
SVDM and a linear SVM for each of the four one-vs-rest problems. Each pair of rows contains
the SVDM and SVM voxel-space discriminants for one problem, with columns corresponding to
brain slices. The discriminants are very similar at a large scale (as seen in a slice by slice correlation
between the two discriminants in Figure 4.21), so whatever difference there is that is responsible for
the difference in performance between the two methods lies in small pattern details. This is visible
in Figure 4.19, where the rows of the matrix W corresponding to the informative components
are plotted. The components place small, localized portions of activation that get added into the
discriminants in Figure 4.20.

Figure 4.22 shows the informative portions ofΘ andZ for dataset M2. In this dataset it’s almost
always the case that each classification problem resorts to a single component (only one positive
entry per row) and each component serves a single problem. Figure 4.23 shows the average cross-
validation fold discriminants learnt by SVDM and a linear SVM for each of the eight one-vs-rest
problems. Looking at Figure 4.21 we see that, unlike in the previous dataset, the discriminants pro-
duced with the two methods are not too similar. SVM seems to be learning sparser discriminants,
with SVDM placing weights in the same locations as SVM and others as well. Moreover, there
is no component relating two classes (in almost all folds) and, if a classifier puts weight in more
than one component, it is for one of the object categories. This is especially puzzling given that the
datasets share some of the same classes.

Possible reasons for this start with details of how the study for each dataset was designed. M1
has smaller voxels (2 × 2 × 2mm) and three of the four classes have known locations that respond
very strongly and selectively to their stimuli. It’s thus likely that SVDM will find voxels that can
be assigned to a single component. M2 has larger voxels (3 × 3.5 × 3mm) and a few categories
(objects) where the responses are less selective, which might justify the fact that those correspond
to the classification problems for which we see components being combined into a decision. Given
that faces and houses are present in both datasets, though, it’s still necessary to explain why the
model is so qualitatively different for those categories.

One possibility is that there are enough components in M1 to reconstruct the data and still
leave a few out to capture very localized responses; this is both because there are fewer categories
but also because the total number of voxels is ≈ 4000. In M2, there are both many more voxels
(≈ 24000) and more categories, but only twice as many components. The conjecture that can be
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tested is that learning models with many more components will lead to those models being more
similar to those in M1; again, doing this was not feasible in time to complete this dissertation, but
will be an area of further work.

Multitask learning

We also carried out preliminary experiments in multitask learning, in two variants of the tool/building
category experiments described in Chapter 2. In the first variant the stimuli are words and come
in one of two different languages, portuguese or english. In the second variant the stimuli come in
two modalities: either words or pictures, with matched items. The multitask problems considered
were predicting category+language or category+modality, with the hypothesized result being that
learning to predict both tasks would make predictions of category in particular more accurate than
learning to predict category alone. The language or modality problems were very easy by them-
selves (accuracy close to 100%) and thus not very suitable to gauge improvements brought about by
multitask learning. In practice, there was no visible advantage to training a multitask model in this
case, both in a leave-1-fold-out cross-validation and in a more data-restricted even-odd split-half
cross-validation, in any of the few subjects tried from either study.
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Figure 4.17: Z andΘmatrices learnt across folds (columns) in dataset M1 (please consider
a single column for the rest of the caption). Top: The informative (non-zero) portion of
Θ, with row i corresponding to classification problem i and containing the weights over
informative components in the discriminant for that class (row 1 is faces, 2 is scenes, 3
is objects, 4 is people, e.g. for faces-vs-nonfaces, weight is only placed on column 2 of
Z, which has a different value for examples labelled faces and all others). Middle: The
corresponding informative portion of the low-dimensional representation Z, with as many
columns as the information portion of Θ, and as many rows as examples. Bottom: The
remaining non-informative portion of Z, with many additional columns and as many rows
as examples.

174



Figure 4.18: Detailed view of the Θ matrix and informative and non-informative parts of
the Z matrix learnt in the 10th fold in Figure 4.17. The informative Θ matrix columns are
aligned with the informative ones in the Z matrix.

175



Z 
ro

w 
1

Z 
ro

w 
2

Z 
ro

w 
3

Z 
ro

w 
4

Z 
ro

w 
5

Figure 4.19: View sideways: The rows of the W matrix corresponding to informative
columns of the Z matrix in the fold of dataset M1 (as shown in Figure 4.18). The full brain
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Figure 4.21: Left: correlation between SVM and SVDM discriminant for each class-
vs-others problem (row) and brain slice (column), for dataset M1 (slices shown in Fig-
ure 4.20). Right: same for dataset M2 (slices shown in Figure 4.23).

4.3 Multisubject models

Thus far the SVDM models considered have always been learnt and deployed on each subject by
itself, with accuracy being the main criterion for judging their worth. In the fMRI domain, however,
models are judged not just by their prediction accuracy but also by the degree to which the model
learnt in one subject shares characteristics with those learnt in others, as well as the extent to which
it is consistent with existing knowledge. One example of this would be having a model that places
weight on similar locations across all subjects and, moreover, chooses regions that are known to be
involved in the task being performed.

This suggests trying to ensure that models do share characteristics across subjects as they are
trained, rather than look for them a posteriori. Why would one expect this to work, intuitively?
The first reason would be that forcing subject models to agree on something would provide bias in
addition to that already present in the SVDM. The second is that more data would be brought to
bear on the problem than would be available for any single subject.

The way the optimization problem has been formulated leads to three straightforward ways of
building a multi-subject model, similar to the two types of matrix stacking for ICA suggested in
[1]. These are illustrated in Figure 4.24:

1. Shared Θ (“sharedT”): learn a single discriminant for all subjects, ensuring that each coor-
dinate in the low dimensional space plays the same role in all of them (e.g. coordinate 2 is
positive for examples that belong to the “Tools” category, negative otherwise). SeparateW
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Figure 4.24: Two possible ways of learning a SVDMmodel combining data from subjects
1 and 2, shared Θ (“sharedT”,top) and shared Θ and Z (“sharedTZ”,bottom).

and Z are produced for each subject.

2. Shared Θ and Z (“sharedTZ”): learn a single discriminant and a single low dimensional
representation Z shared by all the subjects. This would have the advantage of constraining
Z further by ensuring that the role a component plays relative to the labels is the same for
all subjects.

3. SharedΘ and Z, followed by sharedΘ (“sharedTZdecouple”): A third possibility is to train
a model using “sharedTZ” and a penalty encouraging sparsity on the discriminant, yielding
a subject-shared Z where only a few columns are informative and a subject specific W .
After this, a second stage starts where the Θ learnt is fixed and the model is retrained using
“sharedT”, yielding subject-specific Z. The idea is to prevent overfitting by forcing the
model make a few informative components agree across subjects, by making the columns
of Z similar (the advantage of “sharedTZ”); at the same time, it should not force it to agree
on the remainder of the components, since they are used for reconstruction and need not
play similar roles across classes for the different subjects (the weakness of “sharedTZ”). An
approach related to this one is introduced in [45], for an ICA model with subject-shared and
subject independent bases.

How should one measure success of a multisubject model? The most obvious measure is com-
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paring the accuracy of the predictions for each specific subject made by the multisubject model
with those made by single subject models. The contrast is made in Figure 4.25 between the perfor-
mance of the single subject models, the two multisubject models that can generate subject specific
predictions and also of the multisubject model that uses all the subjects, for subjects in dataset D1.
Figure 4.26 makes the same contrasts for the subjects in dataset D2. The first conclusion one can
draw from the graphs is that there does not seem to be any significant advantage (or disadvantage)
in terms of accuracy to training a multisubject rather than a single subject model. The second
conclusion is that “sharedTZ”, the multisubject model that makes a single prediction using all the
subjects, has a performance curve that is roughly the average of that of the three single subject
models.

Finally, we have the question of whether training with multiple subjects will help in a situation
where datasets are smaller. In order to test this we performed a modified 6-fold cross-validation. In
each fold we used all of the data for 2 of the three subjects and only 1

6
th of the data for the third to

build a shared Θ model, testing on the remaining 5
6

th. This was done for each of the three subjects
and then compared with the same procedure done training a single subject model on the 1

6
th of the

data. The accuracy results were roughly the same for both single and multisubject models, in both
datasets.
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Figure 4.25: Top: The classification results learning separate models for each subject in
dataset D1, for different values of D (same as Figure 3.1 in Chapter 3). Middle: Multisub-
ject model subject accuracy curves, for sharedΘ or sharedΘ andZ. Bottom: Multisubject
shared Θ and Z model prediction using all the subjects.
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Figure 4.26: Same as Figure 4.25 for dataset D2184



Chapter 5

Conclusions

The thesis put forth in this dissertation is that machine learning classifiers can be used as instru-
ments for decoding variables of interest from functional magnetic resonance imaging (fMRI) data.
As stated earlier, there are two main goals in decoding:

• Showing that the variable of interest can be predicted from the data in a statistically reliable
manner (i.e. there’s enough information present).

• Shedding light on how the data encode the information needed to predict, taking into account
what the classifier used can learn and any criteria by which the data are filtered (e.g. how
voxels and time points used are chosen).

Chapter 2 considered the issues that arise when using traditional linear classifiers and several
different voxel selection techniques to strive towards these goals. Addressing the former requires
being able to decide on what a significant result is if starting frommany different classification error
estimates. Addressing the latter brought to issues such as whether there is redundant, as well as
different kinds of, information in fMRI data and how those facts complicate the task of determining
whether voxel subsets encode the desired information.

Chapter 3 and Chapter 4 introduced the Support Vector Decomposition Machine, a new al-
gorithm that attempts to sidestep the use of voxel selection by learning a low dimensional repre-
sentation of the data that is also suitable for decoding variables of interest and has the potential to
allow incorporation of domain information directly, rather than through the proxy of voxel selection
criteria.
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Decoding Information From fMRI Data With Linear Clas-
sifiers (Chapter 2)

This chapter starts from the knowledge that is possible to train classifiers to predict variables of
interest from fMRI data (from our own work and that of others) and seeks to answer the following
questions:

1. For each classifier and voxel ranking method, what is the “best” number of voxels, i.e. at
what number of voxels is the true accuracy of the classifier using them higher?

2. Is any classification result significant, taking into account that one has to choose a voxel
selection method and a number of voxels, in addition to trying different classifiers and doing
all of this for multiple subjects?

3. Are there better classifiers or voxel ranking methods, or does it depend on how they interact?

In order to answer the first question, we introduced a procedure for determining the best number
of voxels to use for a given combination of voxel selection method and classifier (rather than just
assume the best number is that with the highest classification accuracy, which is very susceptible
to noise in the presence of small datasets).

The second question is generally answered by testing the significance of only a few results
taken out of a larger set produced with the combination of voxel selection and the use of various
numbers of voxels and classifiers. Our view is that selecting the best number of voxels out of several
tried is an optimistic procedure. In order to test this we considered the use a null model derived
through a permutation test as “ground truth”. In face of its computational cost, we introduced a new
analytical null model and also a permutation test shortcut. Experiments in fMRI data revealed that
the commonly used approaches to testing the significance of classification results in fMRI data are
indeed optimistic, in comparison to the significance determined with the permutation test. Further
experiments revealed that both the analytical null model and the permutation test shortcut provide
significance results closer to that of the permutation test than the usual approach, albeit optimistic
(analytical) and pessimistic (shortcut) relative to it.

Given best results for each voxel selection method combined with a classifier, we used ANOVA
to answer the third question by testing whether method or linear classifier choice make a difference,
across several fMRI studies. The main conclusion is that method choice has much more impact
than classifier choice, if voxel selection is used (not the case if all the voxels are used). From
the machine learning standpoint, the simultaneous comparison of voxel selection and classifier is
novel. With a view on using this methodology with more factors or situations where the effect is not
so clear cut, we also introduced a visualization of mean difference significance for all interactions
of ANOVA factor level. To the best of our knowledge this is a new way of simultaneously gauging
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whether a significant different exists and, if so, what its magnitude and sign are for all interactions
simultaneously.

Beyond the three questions above we also considered the question of whether the use of voxel
selection allows for replicable results in terms of which voxels are used in folds of a cross-validation
procedure and concluded that it mostly does not. The lack of replicability does not, however, seem
to interfere with accuracy, thus indicating a certain degree of redundancy in the set of voxels with
the characteristics we are selecting for.

Finally, we addressed the question of whether different kinds of information are present in
fMRI data, judging by how a given classifier learns different models that make different prediction
mistakes if given data selected by different criteria. There seems to be evidence that, at least for the
multiclass problem datasets, there are groups of voxels with different kinds of information. This
means that it should be feasible to combine groups to improve accuracy, and profitable to examine
the behaviour of the voxel populations involved, as well as their locations.

The conclusions suggest a number of promising directions for future work. The first direc-
tion is tackling the correlation between entries in a result table row (classification results using
successively larger nested sets of voxels picked from a ranking), with two aspects to consider.
Handling correlated errors between successive points is the first aspect, using nonparametric re-
gression methods suited for that setting, and studying it on simulated small dataset result tables
with injected correlation. The other aspect is to find a way to extend the analytical null model for
result significance to take this correlation into account directly. The second direction is to study
the effect of regularization by comparing linear classifier discriminant weights when using all the
voxels, where there are noticeable differences at least between GNB and the other classifiers. Pre-
liminary work suggests the effect of regularization is to prevent a lot of discriminant weight from
being placed in highly correlated voxels; this may have a beneficial effect for two reasons, the
elimination of redundant information and also the fact that, given that noise is spatially correlated,
a group of similar noisy voxels that appear informative are prevented from having too much in-
fluence in the classification decision. The third direction is to examine the effect of preprocessing
choices on the effectiveness of voxel selection methods, in order to ascertain whether those choices
remove or enhance the voxel behaviours the methods look for. These choices can take place at a
very early stage (such as the choice of frequencies to filter out of data) or right before voxels are
selected (such as normalizing feature ranges or making all examples have the same norm across
features). The framework we’ve used to compare classifiers and voxel selection methods in a two
factor ANOVA can easily be extended to add preprocessing choices as a third factor. The goals
would be not just to identify best practices in terms of preprocessing before classifier use but also
to help decide on whether particular choices would interfere with precisely the hypothesized voxel
behaviours one may be seeking.
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The Support Vector Decomposition Machine (Chapter 3)

In this chapter we considered the problem of learning a low-dimensional representation of sparse,
high-dimensional fMRI data capable of decomposing such data in such a way that the low-dimensional
dataset can be related to a variable of interest. Such a low-dimensional representation should be
informative as well as predictive, in that the relationship must be understandable as well as useful
in classification.

We’ve introduced two algorithms that learn a low-rank matrix factorization of the data together
with a classifier to predict the variable of interest from one of the matrices in the factorization pair;
this matrix contains the coordinates of each datapoint in a basis of components given by the other
matrix, and thus acts as a low-dimensional representation. Both algorithms work by trading off
the reconstruction error of the original matrix from the product of the two low-rank matrices and
the error of a classifier based on the low-dimensional representation. Given that the decomposition
into coordinates and basis, each example can then be seen as a weighted sum of components.

We’ve shown that using either algorithm to learn the low-dimensional representation is not
only feasible but, also, that a classifier trained on the learnt representation predicts better than the
same classifier trained on a representation learnt separately using SVD or ICA, the most obvious
competing methods. On the binary classification problems in the fMRI data domain the algorithm
performs as well as the best regularized classifiers learning using all the voxels.

From the standpoint of interpretability, the relating of the components to the variable of inter-
est, it’s not clear that either algorithm is as successful. There are many possible low-dimensional
representations that do equally well in terms of reconstruction or classification error, both while
they are being trained and also in test data. Hence, it’s possible for a representation to be good for
prediction and yet have different components interacting in a complicated way to make that predic-
tion, making it hard to say which of them are informative. This can be addressed by constraining
the learnt solution, in this case by limiting the number of components that can affect prediction,
leaving us with only one or two components to consider informative in a binary classification task.

Chapter 4 considers several other approaches to constraining the solution space or expanding
the capabilities of this class of algorithm, namely:

• Adding regularization to shape the basis images learnt or automatically determined how
many informative components to have.

• Learning low-dimensional representations for several subjects in the same study, sharing
parts of those representations over all of them and using this as an additional source of
constraints.

• Behaviour of the algorithm with more than two class labels.
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Support Vector DecompositionMachine Extensions (Chap-
ter 4)

The main conclusion is that SVDM can be extended to support additional regularization beyond the
simple L2 norm penalty in the original formulation, while maintaining convexity in all its subprob-
lems. It can also be modified to automatically determine the number of informative components
necessary. Furthermore, it can handle multiclass problems and, to the limited extent tested, outper-
form linear SVMs in that setting. Finally, it can be modified in an elegant way to handle multiple
subjects in a single model with subject independent and subject specific parts.

On the negative side, if using binary classification problems, a model with an automatically
determined number of informative components essentially learns a linear SVM. If building a mul-
ticlass model there is no guarantee that there will be any component sharing (one of the original
goals of building an SVDM), though the results suggest it can happen and will likely depend on the
dataset. Finally, there seems to be no no advantage to building multiple subject models, even in the
presence of very small datasets where one would expect the pooled information to be particularly
useful.

Given the above, the most obvious directions for future work are:

• Develop more regularization approaches, drawing from domain specific knowledge and the
feature selection work stemming from Chapter 2.

• Develop the extensions suggested, in particular other types of penalization and making the
learnt basis closer to spatial ICA than to SVD.

• Explicitly enforce more component sharing or certain types of component relationships (e.g.
products of the respective columns in the Z matrix), developing this in tandem with synthetic
data models with known or postulated relationships between stimulus classes (e.g. “cats”
and “faces” must share some activation).

• Study the characteristics of models with many more components, now that we have a means
of ensuring that only as few as necessary will be used for classification.

• Develop methods for interpreting the models learnt using error correcting output codes,
given that they can both be more accurate and also explicitly consider many breakdowns of
the classes into binary problems; eventually, this might be useful for finding class groupings
not predicted by domain experts but that can be accurately distinguished from a particular
voxel support (that would be captured by a component).

• Understanding why no extra information is derived from multi-subject models and whether
combining multisubject with multiclass models will give SVDMmore scope to learn subject-
independent structure.
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• Experimenting with datasets with several tasks performed by the same subject which are
non-trivial from a classification standpoint, in the hope that this will be more favourable for
multitask learning through component sharing.

Machine Learning Classifiers and Neuroscience

The goal of this thesis was to show that machine learning classifiers allow us to examine fMRI data
in ways that go beyond looking for individual voxels matching a specified pattern of behaviour.
This can mean anything ranging from showing that there is enough information in a multivariate
pattern of activation to predicting a variable of interest to revealing how that information is orga-
nized; in the limit, we would like to show how the classes being predicted are related to each other,
how those relationships are underpinned by parts of the pattern of activation and how they, in turn,
reflect known information about the neural substrate and observable phenomena of cognition.

The process of doing this also yielded more general benefits in terms of machine learning
applicability. The lessons learned in terms of training, applying and evaluating classification results
generalize to other domains with sparse, high-dimensional datasets (such as DNA microarrays)
where feature selection is necessary; furthermore, it’s unclear that there is a better feature selection
method. Rather, there may be many different feature behaviours all of which can have some - but
not all - relevant information. Several of the domain characteristics considered also go against the
“traditional” setting for machine learning: examples drawn i.i.d. from an example distribution,
with more examples than features and uncorrelated features. Our belief is that the work in this
domain shows that something can be learnt even when reality is far from this setting.

SVDM is an attempt to deal with the fact that the sparse high-dimensional data may, in addition,
be more complex than usual due to the presence of many sources of activation. Most of these are
unrelated, or only partially related, to what we would like to predict and thus act as a complex,
structured noise. Furthermore, it has both a spatial and a temporal dimension (especially in fast
event-related designs) that may both provide additional leverage (e.g. spatial smoothness prior
for classifier parameters) and hinder us through violated assumptions (e.g. examples no longer
being drawn independently, or appearing only as mixtures). Finally, that same spatial structure
also manifests in relationships between features: we can expect correlation, mutual inhibition or
even more complex combinatorial codes as spatial resolution improves.

In conclusion, we hope that this dissertation convinces the reader that cognitive neuroscience
has a lot to offer to machine learning as an application area, both in terms of challenging data prop-
erties but also of the richness of the domain knowledge and potential payoff in terms of influencing
current scientific practice.
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